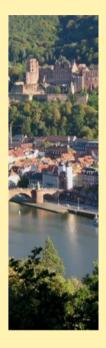
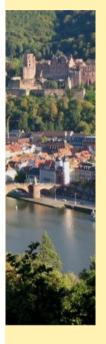

ifeu – Institute for Energy and Environmental Research Heidelberg



Presentation of IFEU

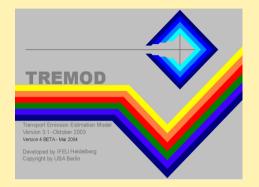
Dr Guido Reinhardt

4F Crops Kick-off meeting Brussels, 1 July 2008

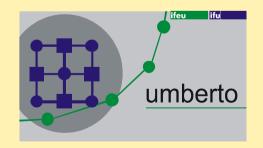


IFEU - Institute for Energy and Environmental Research Heidelberg, since 1978

- Independent scientific research institute
- Organised as a private non profit company with currently about 40 employees
- Research / consulting on environmental aspects of
 - Energy (including Renewable Energy)
 - Transport
 - Waste Management
 - Life Cycle Analyses
 - Environmental Impact Assessment
 - Renewable Resources
 - Environmental Education


IFEU focuses regarding the topic of biomass

- Research / consulting on environmental aspects of
 - transport biofuels
 - biomass-based electricity and heat
 - biorefinery systems
 - biobased materials
 - agricultural goods and food
 - cultivation systems (conventional agriculture, organic farming, etc.)
- Potentials and future scenarios
- Technologies / technology comparisons
- CO₂ avoidance costs
- Sustainability aspects / valuation models


TREMOD: Transport Emission Model

- Modelling emissions of road vehicles, trains, ships and airplanes
- Official database of the German Ministries for emission reporting



Life cycle analyses (LCA) and technology impact assessments since 1990:

- Biofuels (all biofuels, all applications)
- Alternative transportation modes
- Renewable Energy

IFEU - Institute for Energy and Environmental Research Heidelberg, since 1978

Our clients (on biomass studies)

- World Bank
- UNEP, FAO, GTZ, etc.
- European Commission
- National and regional Ministries
- Associations (industrial, scientific)
- Local authorities
- WWF, Greenpeace, etc.
- Companies (Daimler, German Telecom, Shell etc.)
- Foundations (German Foundation on Environment, etc.)

ifeu – Institut für Energieund Umweltforschung Heidelberg gGmbH

Life cycle assessment of bread production

Final report

Dr. Guido Reinhardt Andreas Patyk Jörg Braschkat

Commissioned by the Federal Environmental Agency (UBA)

Heidelberg, June 2003

"Life cycle assessment of bread production"

Utilisation and communication of the Cumulated Energy Demand (CED) as a practical decision parameter for sustainable products and services, commissioned by the Federal Environment Agency, Dessau

Authors: Guido Reinhardt, Andreas Patyk, Jörg Braschkat

Final report: June 2003

ifeu – Institut für Energieund Umweltforschung Heidelberg gGmbH

CO₂ Mitigation through Biofuels in the Transport Sector

Status and Perspectives

Dr. Guido Reinhardt Sven Gärtner Markus Quirin Martin Pehnt

Commissioned by the Research Association for Combustion Engines (FVV)

Heidelberg, 2004

"CO₂ Mitigation through Biofuels in the Transport Sector. Status and Perspectives"

Commissioned by the Research Association for Combustion Engines (FVV), Frankfurt

Authors:

Guido Reinhardt, Sven Gärtner, Markus Quirin & Martin Pehnt

Project duration: 2003 - 2004

ifeu – Institut für Energieund Umweltforschung Heidelberg gGmbH

Renewable raw materials for the chemical industry

Options and potentials for the future

Dr. Guido Reinhardt Andreas Detzel Sven Gärtner Nils Rettenmaier Martina Krüger

Supported by the German chemical industry association (VCI)

Heidelberg, 2007

"Renewable raw materials for the chemical industry – Options and potentials for the future"

Report prepared under support of the German chemical industry association (VCI), Frankfurt

Authors:

Guido Reinhardt, Andreas Detzel, Sven Gärtner, Nils Rettenmaier & Martina Krüger

Project duration: Dec 2005 – Jan 2007

Study on 5 F Crops

ifeu – Institut für Energieund Umweltforschung Heidelberg gGmbH

Assessment of energy and greenhouse gases inventories of Sweet Sorghum for first and second generation bio-ethanol

Dr. Guido Reinhardt Sven Gärtner Susanne Köppen

Commissioned by the Food and Agricultural Association (FAO)

Heidelberg, May 2008

"Assessment of energy and greenhouse gases inventories of Sweet Sorghum for first and second generation bioethanol"

Report commissioned by the Food and Agricultural Association (FAO), Rome

Authors: Guido Reinhardt, Sven Gärtner, Susanne Köppen

Final report: May 2008

"Industrial conversion of biomass"

Report prepared by the Office of Technology Assessment at the German Bundestag (TAB).

TAB author: Dagmar Oertel

IFEU contribution:

"Future component use of renewable raw materials" (Chapter IV)

IFEU Authors: Guido Reinhardt, Sven Gärtner & Andreas Patyk

IFEU: \rightarrow WP leader of WP 4 \rightarrow Task leader of tasks 4.2, 4.3, 4.4						
<u>WP 4: Env</u>	<u>vironmental analysis</u>					
Task 4.1	Environmental impact Unil assessment	AVOV				
Task 4.2	Life cycle analysis	IFEU				
Task 4.3	Modeling of dependencies and sensibilities	IFEU				
Task 4.4	Identification of best options	IFEU				

The Team

Sven Gärtner

Dr. Guido Reinhardt

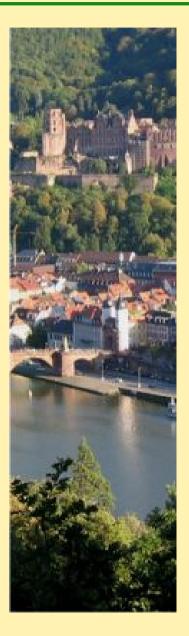
Contact:

guido.reinhardt@ifeu.de + 49 - 6221 - 4767 - 0 / - 31 www.ifeu.de

Nils Rettenmaier

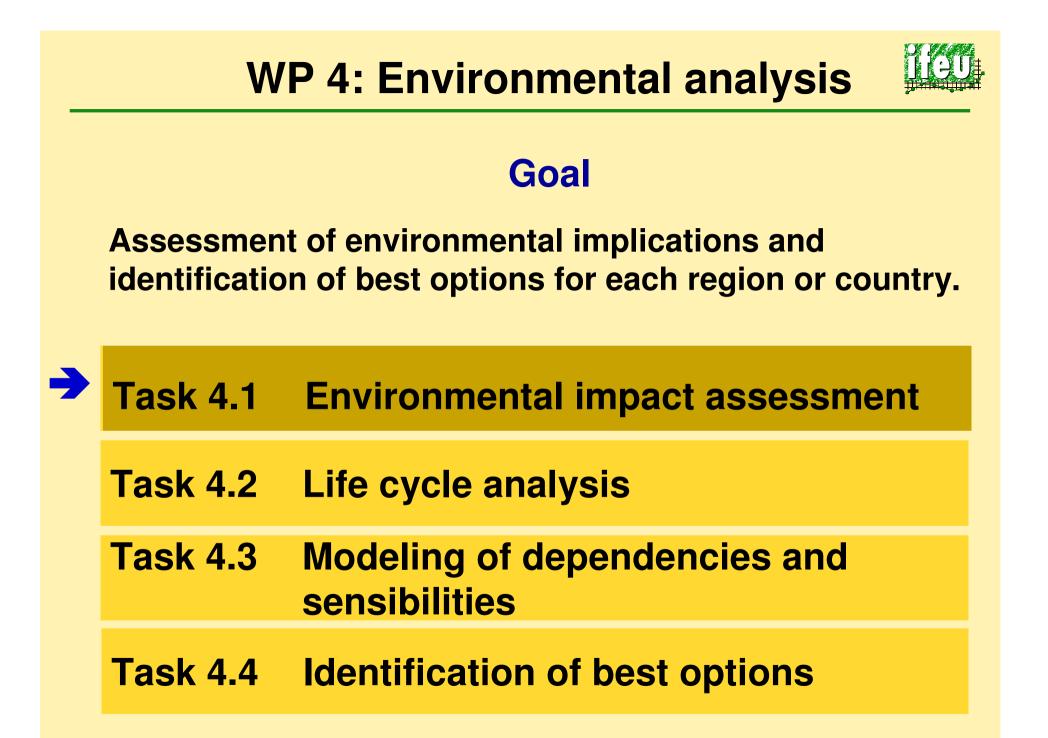
Susanne Köppen Downloads: www.ifeu.de

Julia Münch



Eva v. Falkenstein

ifeu – Institute for Energy and Environmental Research Heidelberg



WP 4 Environmental analysis Overview & work plan

Dr Guido Reinhardt

4F Crops Kick-off meeting Brussels, 1 July 2008

Task description

- The local environmental impacts due to production of non-food crops will be evaluated, with focus on parameters like erosion, implications on water resources and supply, biodiversity, etc.
- Besides, the influence of the crops themselves and the choice of the farming location will be investigated.
- The results will account for specific country, crop and field conditions. Overall interactions and similarities or equalities will be pointed out.

WP 4: Environmental analysis

Goal

Assessment of environmental implications and identification of best options for each region or country.

	Task 4.1	Environmental impact assessment
→	Task 4.2	Life cycle analysis
	Task 4.3	Modeling of dependencies and sensibilities
	Task 4.4	Identification of best options

Task description

- Using life cycle assessment (LCA) methodology according to the rules of ISO 14040/44, the environmental implications of all non-food crops under concern will be assessed by comparing the products from non-food crops to their fossil counterparts.
- The complete life cycles of all bio-products will be taken into account, whereas fuel = bioenergy and fiber = biobased materials. The whole production chain of each crop and resulting bio-product will be included as well as the agricultural reference systems, use of by-products and ashes, including all relevant conversion technologies under concern.
- Life cycle inventory parameters like primary energy demand, CO₂ or NO_x will be used to describe resource demand, greenhouse effect, acidification, eutrophication, ozone depletion and human toxicity.

WP 4: Environmental analysis

Goal

Assessment of environmental implications and identification of best options for each region or country.

Task 4.1	Environmental impact assessment
Task 4.2	Life cycle analysis
Task 4.3	Modeling of dependencies and sensibilities
Task 4.4	Identification of best options
	Task 4.2 Task 4.3

Task description

- For each comparison of a bio-product vs. its conventional counterpart, the basic scenarios will be transferred to "reference scenarios" which will incorporate correlations using functional dependencies.
- One or more reference scenarios for each non-food crop and relating bio-product describing all environmental implications will be produced.
- The scenarios include multi-functional dependencies as on yields, farming methods, fossil fuels to be substituted, country-specific conditions, etc. In addition, the timeframes of the project, 2020 and 2030 are taken into account by calculating separate sensitivity analyses.

WP 4: Environmental analysis

Goal

Assessment of environmental implications and identification of best options for each region or country.

Task 4.1	Environmental impact assessment
Task 4.2	Life cycle analysis
Task 4.3	Modeling of dependencies and sensibilities
Task 4.4	Identification of best options

Task description

In this task, the best options for the production and use of a set of different non-food crops and resulting bio-products in the future will be assessed by using a multi-functional assessment tool. Four steps are necessary:

- All the reference scenarios will be combined
- The combinations will be optimized in terms of their environmental implications. Options with a high potential to save fossil energy carriers and to reduce the greenhouse effect will be preferred, following recommendations of the EU white paper and the Kyoto protocol.

Task description (contin.)

- For all options, the overall potential on the environmental implications will be investigated. Basic data for the calculations will be assessed by the respective partners.
- All results will be compared with the results from the economic analysis (WP 3). Modifications will be made to ensure realistic options with an optimal combination of economic and environmental implications.

WP 4: Environmental analysis

IFEU: \rightarrow **WP leader** of WP 4

Responsibilities

Task 4.1	Environmental impact Unil assessment	NOVA
Task 4.2	Life cycle analysis	IFEU
Task 4.3	Modeling of dependencies and sensibilities	IFEU
Task 4.4	Identification of best options	IFEU

Deliverables WP 4

		Responsible	Month
D 12	Environmental analyses	UniNOVA	12
D 13	Life cycle analysis	IFEU	12
D 14	Set of best options	IFEU	21

Milestones WP 4

	F	Responsible	Month
M 15	Environmental impact assessment	UniNOVA	6 & 12
M 16	Life cycle analysis	IFEU	6 & 12
M 17	Modeling of depen- dencies and sensitivities	IFEU	12 & 18
M 17	Identification of best optic	ons IFEU	15 & 21

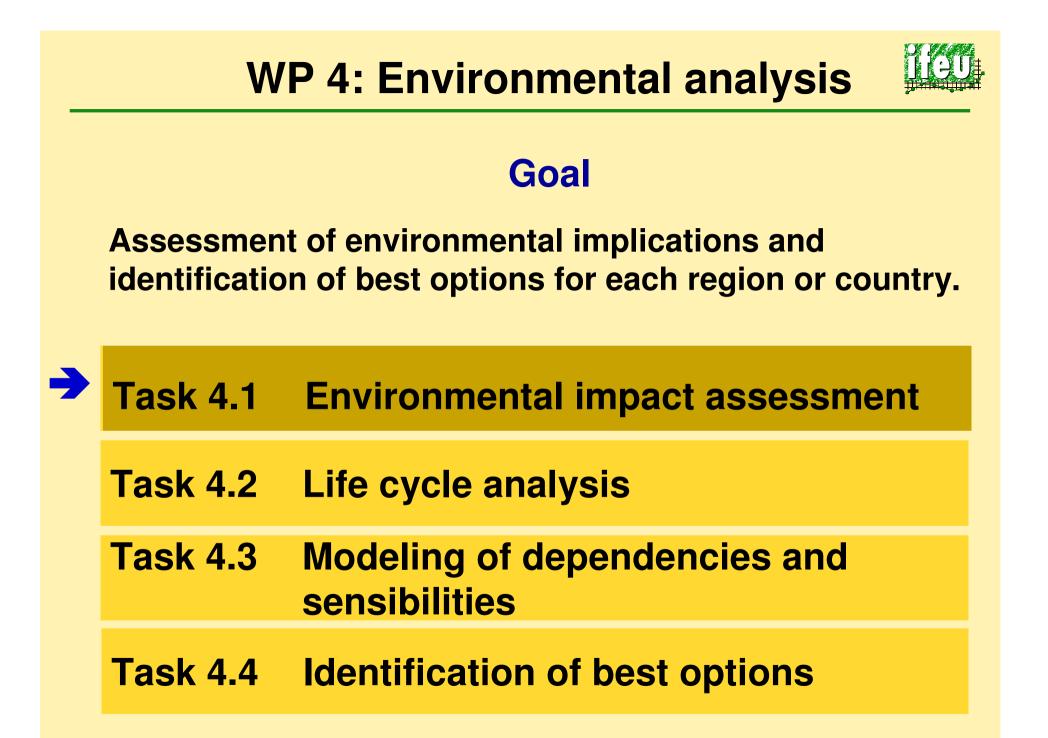
Time line of WP 4

WP 4	Year 1 Year 2							
Months	1-3	4-6	7-9	10-12	13-15	16-18	19-21	21-24
4.1 Environmental impact assessm.		M15		D12 M15				
4.2 Life cycle analysis		M16		D13 M16				
4.3 Modeling of dependencies & sensibilities				M17		M17		
4.4 Identification of best options					M18		D14 M18	
31 Dec 2008 1 30 June 2009 1 M = Milestone D = Deliverable								

Time line of WP 4

WP 4	Year 1 Year 2							
Months	1-3	4-6	7-9	10-12	13-15	16-18	19-21	21-24
4.1 Environmental impact assessm.		M15		D12 M15				
4.2 Life cycle analysis		M16		D13 M16				
4.3 Modeling of dependencies & sensibilities				M17		M17		
4.4 Identification of best options					M18		D14 M18	
31 Dec 2008 1 30 June 2009 1							lestone liverable	

→ Work plan in detail for the next 6 / 12 months related to task 4.1 and 4.2 only


How to start ?

In order to fulfil the goal and scope of WP 4, it is necessary to define several system boundaries and pathways:

- General settings & definitions for the whole WP 4 (and other WPs like WP 3) like selection of crops and countries / regions
 wait for results from WP 1 (start after 6 months)
- Specific settings & definitions for task 4.1 (EIA)

 → start now
- Specific settings & definitions for task 4.2 (LCA)

 → start now

Task description

- The local environmental impacts due to production of non-food crops will be evaluated, with focus on parameters like erosion, implications on water resources and supply, biodiversity, etc.
- Beside this, the influence of the crops themselves and the choice of the farming location will be investigated.
- The results will account for specific country, crop and field conditions. Overall interactions and similarities or equalities will be pointed out.

Task 4.1: work plan

Presentation from UniNOVA:

Ana Luísa Fernando, FCT / UNL

Task 4.1: work plan

Definitions and specifications due after 6 months

Task 4.1: work plan

Definitions and specifications due after 6 months

- List of environmental parameters (like water quality, soil quality, land use aspects et cetera)
- Methodological details for EIA (like different procedures for agricultural and industrial / conversion sites etc.)
- System definitions applicable to the EIA (like inclusion of nearby areas next to agricultural sites etc.).
- All other definitions and specifications related to the EIA (like time frame etc.)

Task 4.1: What has to be done ?

To-do list	responsible
First setup of definitions → send to CRES / IFEU	UniNOVA
Comments → send to UniNOVA	CRES/IFEU
Update → send to all partners	UniNOVA g8
Comments → send to UniNOVA	All partners
> Finalize	UniNOVA

C	I	ï	Ы	0	2	5
9	H		u	C	9	9

g8 guido; 14/5/2008

Task 4.1: What has to be done?

To-do list	responsible	Schedu	le (proposal)
First setup Send to 0	of definitions CRES / IFEU	UniNOVA	end Aug 2008
Comments Send to l	JniNOVA	CRES/IFEU	end Sept 2008
Update Send to a	all partners	UniNOVA	99 mid Oct 2008
Comments Send to l	JniNOVA	All partners	mid Nov 2008
Finalize		UniNOVA	end Dec 2008

C	I	ï	Ы	0	2	6
9	l		u	C	9	U

g9 guido; 14/5/2008

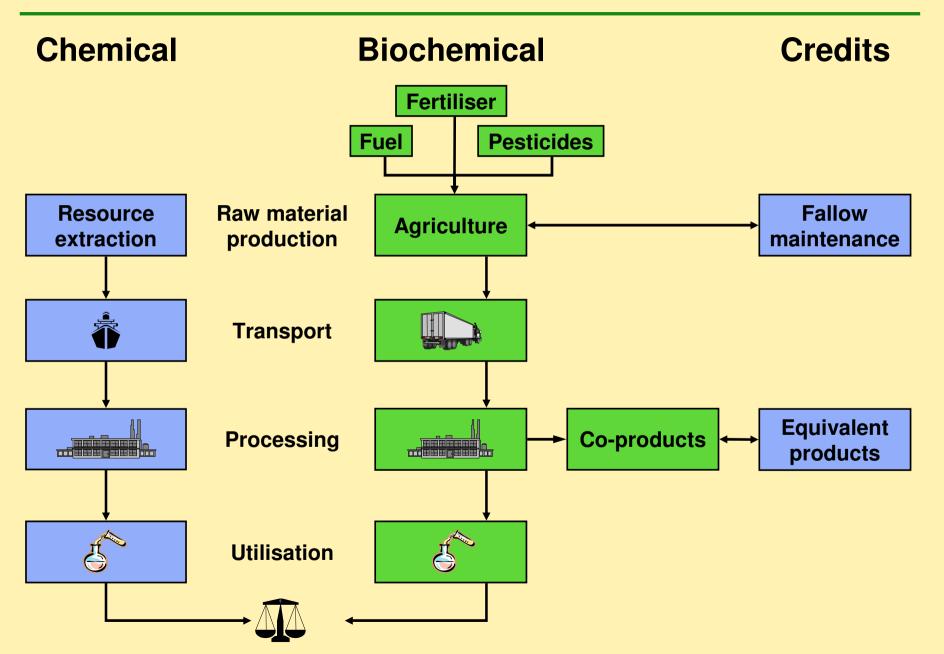
Task 4.1: work plan

Any comments ?

WP 4: Environmental analysis

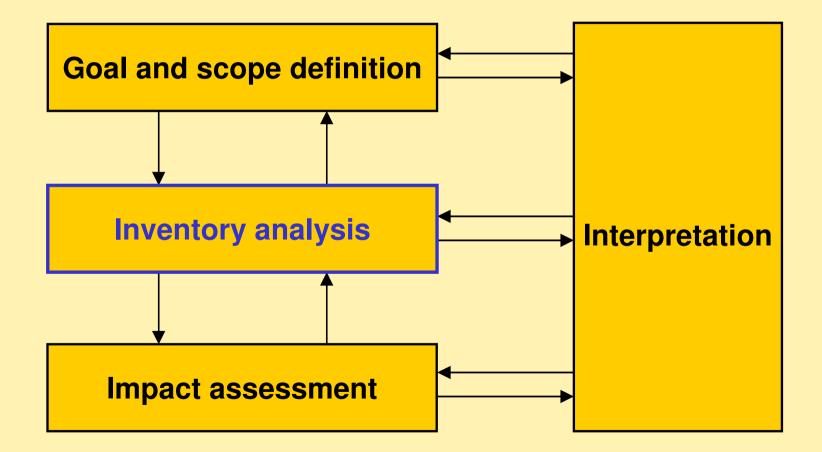
Goal

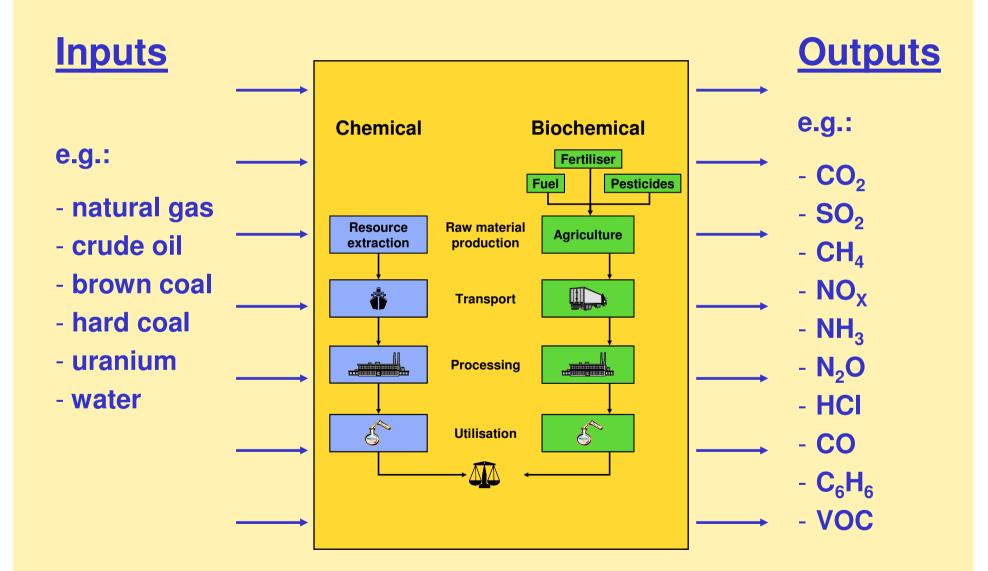
Assessment of environmental implications and identification of best options for each region or country.


	Task 4.1	Environmental impact assessment
→	Task 4.2	Life cycle analysis
	Task 4.3	Modeling of dependencies and sensibilities
	Task 4.4	Identification of best options

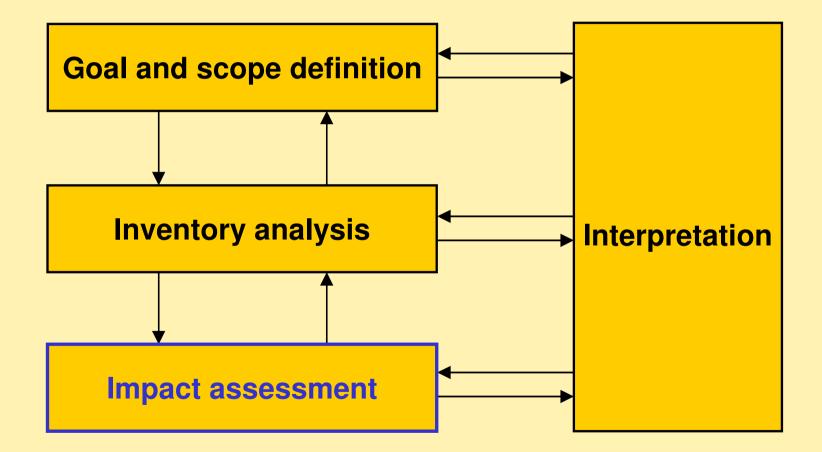
Task description

- Using life cycle assessment (LCA) methodology according to the rules of ISO 14040/44, the environmental implications of all non-food crops under concern will be assessed by comparing the products from non-food crops to their fossil counterparts.
- The complete life cycles of all bio-products will be taken into account, whereas fuel = bioenergy and fiber = biobased materials. The whole production chain of each crop and resulting bio-product will be included as well as the agricultural reference systems, use of by-products and ashes, including all relevant conversion technologies under concern.
- Life cycle inventory parameters like primary energy demand, CO₂ or NO_x will be used to describe resource demand, greenhouse effect, acidification, eutrophication, ozone depletion and human toxicity.


LCA: Life cycle comparison

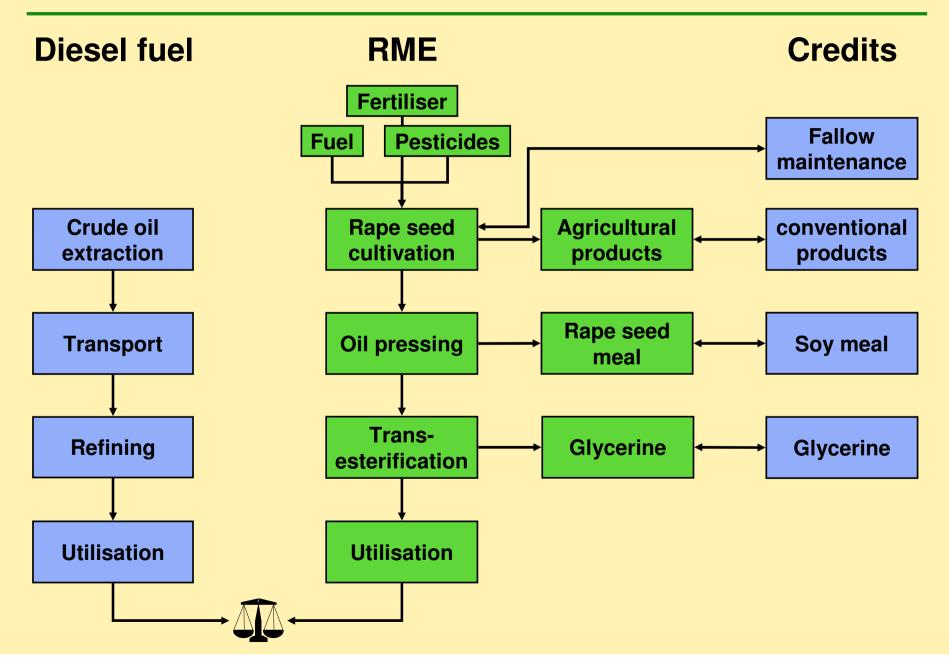

Life cycle assessment (LCA)

ISO 14040 & 14044


LCA: Inventory Analysis

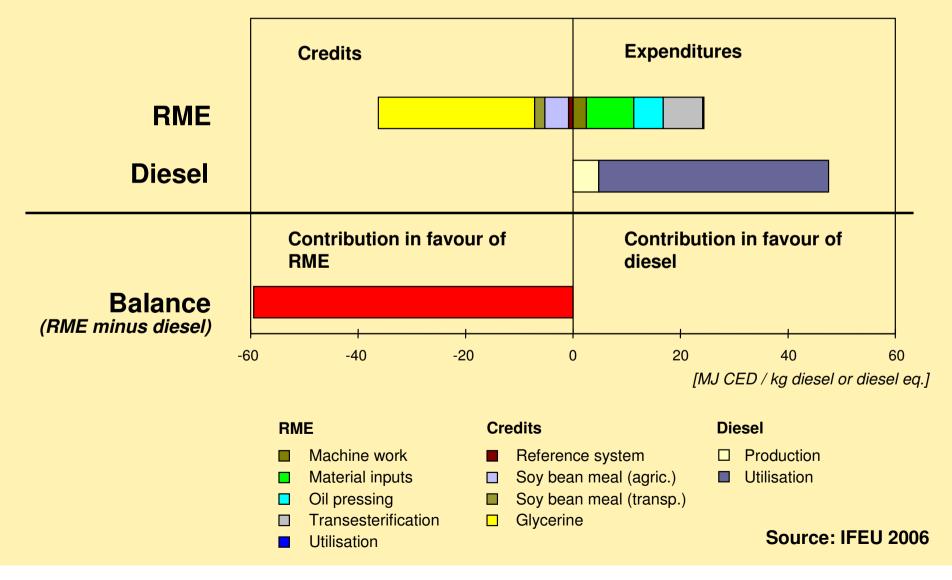
Life cycle assessment (LCA)

ISO 14040 & 14044

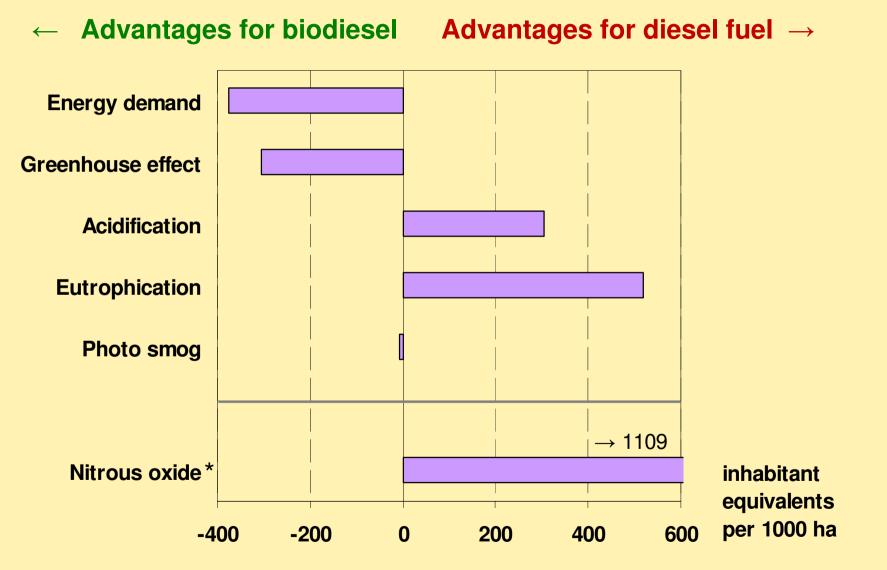


LCA: Impact assessment

Impact category	Parameter	Substances (LCI)
Resource demand	Sum of depletable primary energy carriers	Crude oil, natural gas, coal, Uranium,
	Mineral resources	Lime, clay, metal ores, salt, pyrite,
Greenhouse effect	CO ₂ equivalents	Carbon dioxide, dinitrogen monoxide, methane, different CFCs, methyl bromide,
Ozone depletion	F11 equivalents, (Nitrous oxide)	CFC, halone, methyl bromide,
Acidification	SO ₂ equivalents	Sulphur dioxide, hydrogen chloride, nitrogen oxides, ammonia,
Eutrophication	PO ₄ equivalents	Nitrogen oxides, ammonia, phosphate, nitrate
Photosmog	Ethylene equivalents	Hydrocarbons, nitrogen oxides, carbon monoxide, chlorinated hydrocarbons,
Human and Ecotoxicity		Nitrogen oxides, carbon monoxide, hydrogen chloride, diesel particles, dust, ammonia, benzene, benzo(a)pyrene, sulphur dioxide, dioxines (TCDD),

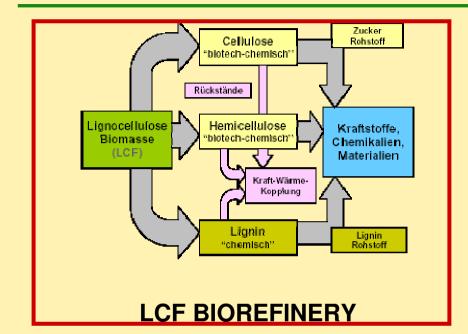

Example 1: Rapeseed oil biodiesel

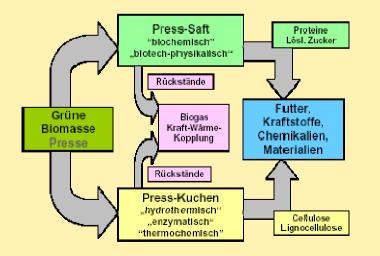
Results: RME versus diesel fuel



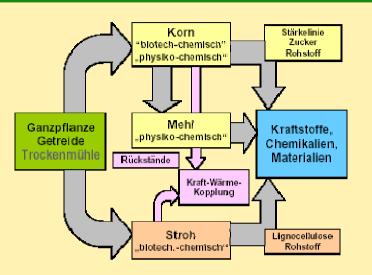
Resource demand (energy balance)

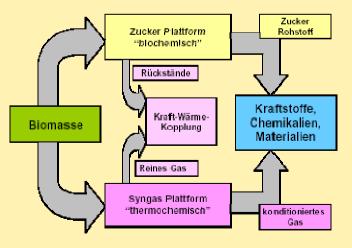
Results: RME versus diesel fuel



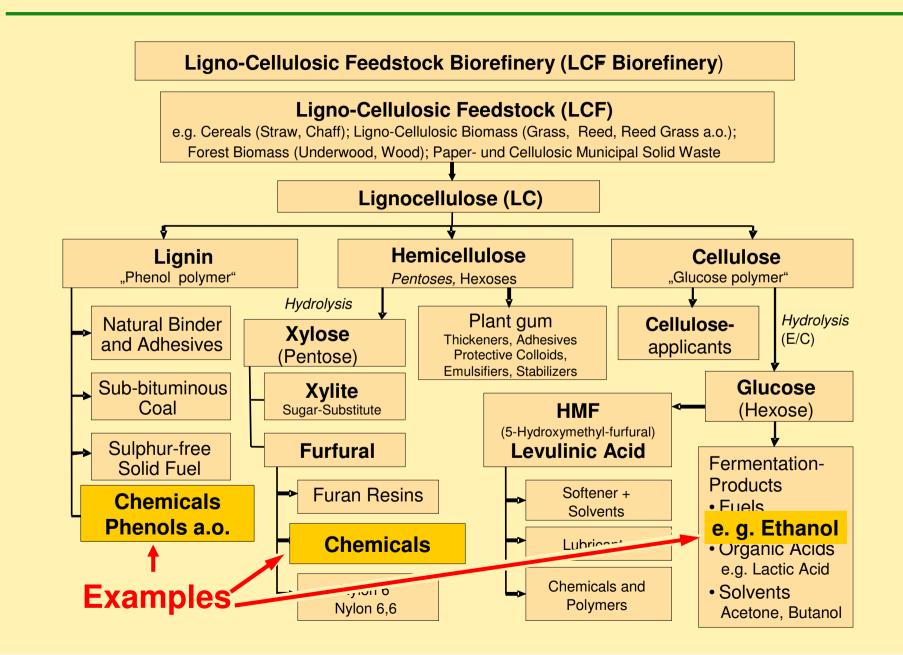

* one parameter for ozone depletion

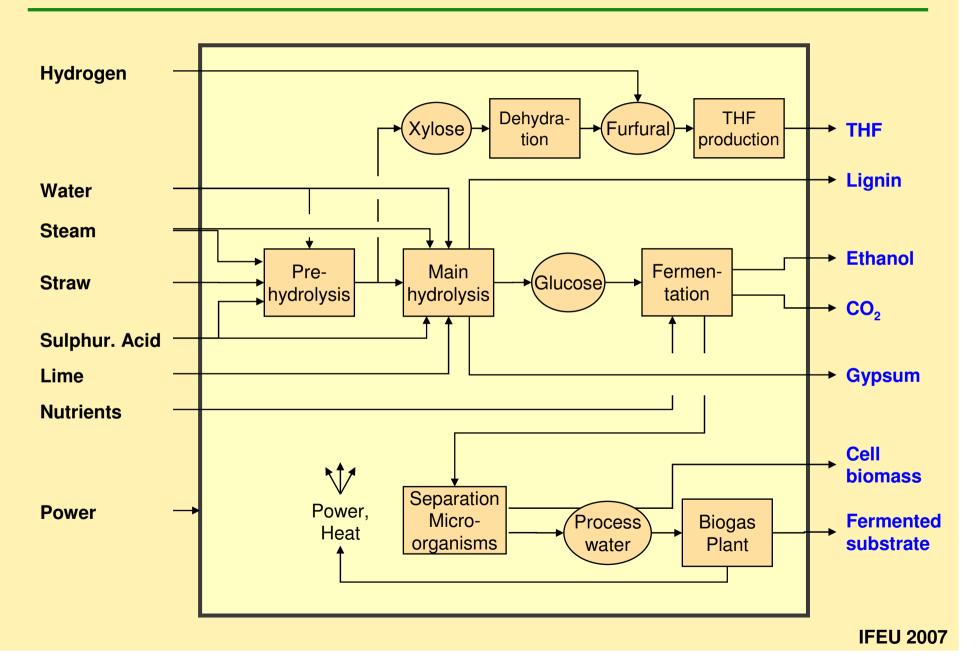
Source: IFEU 2007


Overview: Biorefineries

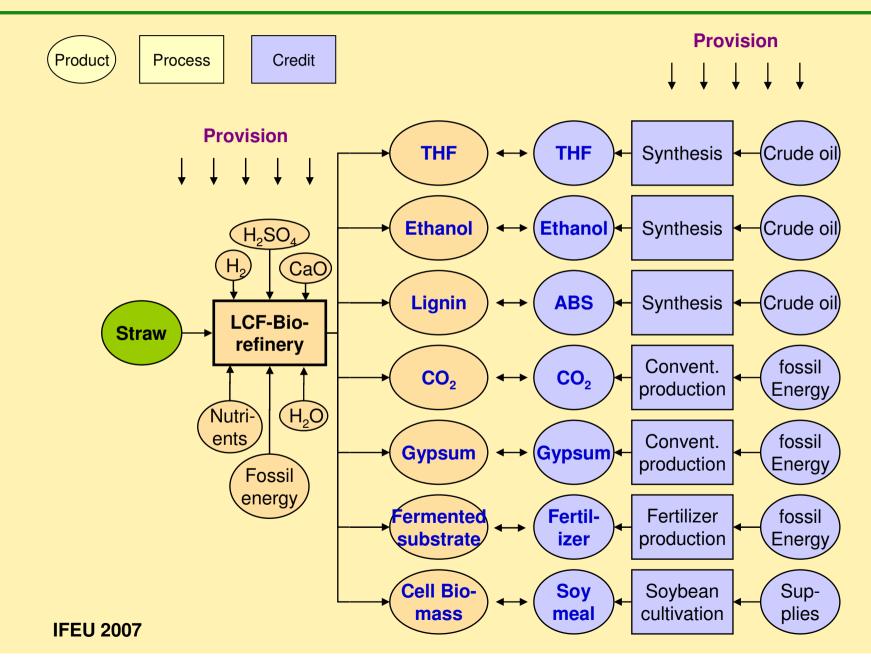


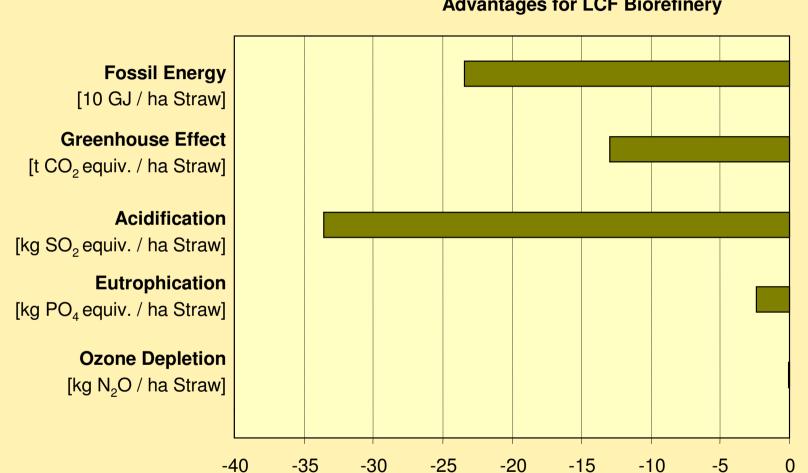
GREEN BIOREFINERY


WHOLE-CROP BIOREFINERY

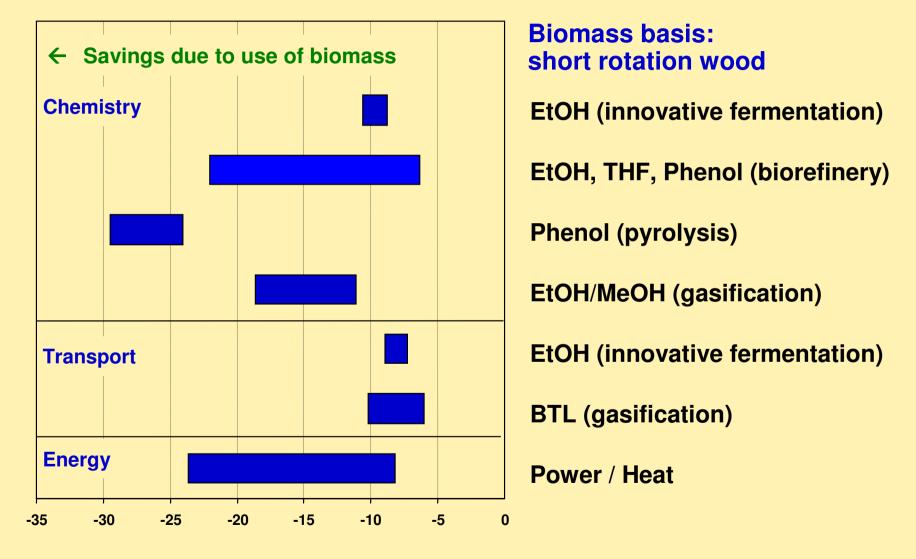

TWO PLATFROM CONCEPT

Scheme of a LCF biorefinery





Analyzed product paths: LCF BR


Results: LCF biorefinery

Advantages for LCF Biorefinery

Results: Biomass uses compared

Greenhouse effect in t of CO₂ equiv. per hectare

IFEU 2007

How to start ?

In order to fulfil the goal and scope of WP 4, it is necessary to define several system boundaries and pathways:

- General settings & definitions for the whole WP 4 (and other WPs like WP 3)
 → wait for results from WP 1 (start after 6 months)
- Specific settings & definitions for task 4.1 (EIA)

 → start now
- Specific settings & definitions for task 4.2 (LCA)

 → start now

Task 4.2: work plan

Definitions and specifications due after 6 months

- List of environmental impact categories (like greenhouse effect, acidification et cetera)
- Methodological details for life cycle inventory and life cycle impact assessment (like aggregation of all greenhouse gases).
- System definitions applicable to the environmental assessment (like fossil and biogenic resource differentiations, direct / indirect land use).
- All other definitions and specifications related to the environmental assessments (like inclusion of infrastructure, time frame etc.)

Task 4.2: What has to be done ?

To-do list	responsible	
First setup of definitions → send to CRES	IFEU	
Comments → send to IFEU	CRES	
Update send to all Partners	IFEU g2	
Comments → send to IFEU	All partners	
Finalize	IFEU	

C	I	ï	Ы	0	5	6
9	H	l	u	C	9	U

g2 guido; 14/5/2008

Task 4.2: What has to be done ?

To-do list	responsible	Schedu	le (proposal)
First setup Send to		IFEU	end Aug 2008
Comments Send to	IFEU	CRES	end Sept 2008
Update Send to a	all Partners	IFEU	_{g3} mid Oct 2008
Comments Send to	IFEU	All partners	mid Nov 2008
Finalize		IFEU	end Dec 2008

C	I	ï	Ы	0	5	7
9	l	l	u	C	9	

g3 guido; 14/5/2008

Task 4.3 and 4.4: work plan

.... will follow later in the course of the project

WP 4 Environmental analysis

Decisions

- Work plan Task 4.1: as suggested ?
- Work plan Task 4.2: as suggested ?

The end

