

List of the future non food crops as it was recorded in 4F CROPS project

Salvatore Luciano Cosentino

Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni Animali Università degli Studi di Catania, Italy

2° Workshop – Madrid, 24 March 2009

Market potential based on present production data (Eurostat 2005)

	Number of product categories	Percentage product categories registered	Total registered value* (billion €)	Present share Biobased ** (billion €)	Comm odities	Crops
Materials from biomass	323	78%	250.6	187.7	?	?
Substances from biomass	101	60%	47.9	23.2	?	?
Building blocks from biomass	356	33%	155.2	34.5	?	?
Totals	780	55%	453.7	245.3	?	?

* excluding the confidential data

** of the non-food, non-feed component, based on expert judgement

NON FOOD CROPS

- The term **non food crops** <u>should apply</u> to the use of agricultural crop for uses other than human (as <u>food</u>) or animal consumption (as <u>feed</u>). They include:
- **Energy crops**: crops grown for direct heat/power generation (e.g. coppiced willow) or a feedstock for liquid fuels (e.g. oilseed rape for biodiesel, cereal and beet crops for bioethanol).
- **Pharmaceutical-crops** (or pharma-crops): crops (plant, animal, microbial), largely in development at present, grown for the production of pharmaceuticals or their precursors, e.g. vaccines, antibodies or therapeutic proteins.
- Other non-food crops: crops grown for other purposes of which examples include: fibres (cotton, hemp, flax etc), lubricants and waxes (oilseed rape, mustard, linseed), printing inks (oil seed rape) essential oils and dyes, compostable plastics (starch-crops).

NON FOOD CROPS

A non food product may be obtained from:

- A food/feed crop (i.e. silage maize used for biogas production; biodiesel from rapeseed, ethanol from sugar cane and sugar beet, etc.)
- A variety bred for a non food product derived from a food crop (flax bred for fiber other than oil)
- A crop used for non food purposes (cotton, hemp)
- A new species grown for non food product (Arundo donax, Miscanthus, Brassica carinata, etc.)

NON FOOD CROPS

According to the agronomic and breeding development the crops (food/feed and non food) for non food products suited to European Union soil and climatic conditions have been classified as

Old (conventional) crops: when exists a sufficient number of varieties, agronomic management is well known and agricultural machinery has been developed

New crops (species): when no or scarce breeding activity was carried out, agronomic management is still under research activity and agricultural machinery was not yet developed

List of crops (food/feed and non food) for non food products suited to European Union soil and climatic conditions

Oil crops

Old crops: rapeseed, linseed, hemp, cotton, sunflower, castor bean, safflower

New Crops: Brassica carinata, cardoon, Crambe abyssinica, Brassica juncea, Sinapis alba

Starch and sugar crops

Old crops: wheat, barley, triticale, oats, rye, maize, potato, sugar beet, grain sorghum, Jerusalem artichoke

New crops: sweet sorghum

List of crops (food/feed and non food) for non food products suited to European Union soil and climatic conditions

Fiber and cellulose crops

Old crops: flax, cotton, hemp, kenaf

New crops: fiber sorghum, *Arundo donax*

Lignocellulosic crops

Old crops: hemp, kenaf

New Crops: Poplar, Willow, Eucaliptus, Arundo donax, miscanthus, switchgrass, cardoon, fiber sorghum, reed canary grass, Castor bean, Phragmites spp., Saccharum aegyptiacum, Sida hermaphrodita

Plant-derived pesticides (Carruba and Torre, 2003)

Family (species number)	Utilized part	Family (species number)	Utilized part
Anacardiaceae (1)	E	Liliaceae (4)	В
Annonaceae (1)	L, F	Malvaceae (1)	E
Apiaceae (2)	E	Meliaceae (3)	E, S
Apocinaceae (3)	E, L	Mirtaceae (1)	R
Araceae (4)	E	Papaveraceae (1)	E
Asteraceae (12)	E, FI, R	Pedaliaceae (1)	S
Brassicaceae (2)	S, E	Polygonaceae (1)	E
Celastraceae (3)	E, R	Rubiaceae (2)	R
Chenopodiaceae (1)	L	Rutaceae (2)	S
Ericaceae (1)	FI	Simarubaceae (4)	E, W
Labiatae (8)	E	Solanaceae (3)	S, F, L, E
Leguminosae (7)	P, R, S		

E= extracts; L= leaves; F= fruits; R= roots; Fl=flowers; P=pods; S= seeds; B=bulbs; W=wood

Plant-derived antifeedants that inhibits normal feeding behaviour of pests

Family (species number)	Active compounds	Family (species number)	Active compounds
Amarillidaceae (2)	A	Labiatae (20)	D
Apiaceae (5)	Se, S	Leguminosae (6)	F, I
Aracesa (1)	A	Piperaceae (2)	L
Asteraceae (17)	S, A, C	Plumbaginaceae (1)	Ν
Cannaceae (2)	n.a.	Polygonaceae (2)	S
Chenopodiaceae (2)	A, n.a.	Rutaceae (5)	n.a., C
Convolvulaceae (3)	A, n.a.	Solanaceae (3)	A, F
Cruciferae (1)	Т	Verbenaceae (6)	D

A= alkaloids; Se= sesquiterpens; T= terpens; S= steroids; A=asarons; C=coumarins; D= diterpens; T= triterpens; F= flavonoids; I= isoflavonoids; L=lignans;

n.a.=not available information

Brassicaceae

- Brassica carinata
- Brassica rapa
- Sinapis alba
- Crambe abyssinica
- > Brassica campestris
- Brassica juncea
- Brassica nigra

Habitus: annual *Growing season*: fall-spring *Sowing time*: fall *Thermal requirements*: 5-30° C Oil with high erucic acid

Brassicaceae

- ✓ Native of Mediterranean countries
- \checkmark No need of vernalization
- ✓ the growing season end in April (Crambe) and June (Brassica): 150-190 days
- ✓ Earlier flowering than rapeseed
- ✓No pod shatter
- ✓ Seed yield: between 2 and 3.5 t ha⁻¹
- ✓ Seed oil content between 25% and 45%
- ✓ Erucic acid content between 30% and 45%

Brassica juncea

Brassica napus

Brassica nigra

Brassica carinata

Brassicaceae: Seed yield (t ha⁻¹)

Brassicaceae: Oil content (%)

Glucosinolates-containing plants in biofumigation

- Enzimatic hydrolysis of glucosinolates (GLs): the typical defensive system of the *Brassicaceae* families
 - Rapistrum rugosum
 - Brassica juncea
 - Brassica nigra
 - Eruca sativa

Glucosinolate (common name)	Glucosinolate (Structure of the chain)	Species of origin (ripe seeds)		
NASTURTIN	СН,-СН,-СН,-	Barbarea verna ISCI 100		
TROPAEOLIN	CH.	Lepidium sativum ISCI 101		
SINIGRIN	CH ₂ =CH ₂ -CH ₂ -	Brassica juncea ISCI 20		
NAPIN	CH ₂ =CH-CH ₂ -CH ₂ -	Brassica rapa cv. Silla		
CHEIROLIN	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -	Rapistrum rugosum ISCI 4		
ERUCIN	CH3-S-CH2-CH2-CH2-CH2-CH2-	Eruca sativa cv. Nemat		
IBERIN	CH ₃ -SO-CH ₂ -CH ₂ -CH ₂ -	Iberis amara cv. Eisberg		
CH2=CH-CH-CH2- EPI-PROGOITRIN I OH		Crambe abyssinica cv. Mari		

 Amending soil with these biocidal compounds by contrasting nematocidal activity

Flax (Linum usitatissimum L.)

• Climate zone: Pannonian, Continental,

Atlantic, Lusitanian, Mediterranean N & S

- Temperature requirement: 8-22 °C
- Growing season: spring summer (Central North Europe); autumn – winter – spring (South of Europe)
- Contraints of cultivations: None
- Yield: 6 11 t ha⁻¹ of straw; 0.69 1.69 t ha⁻¹ of seed
- Fiber Characteristics: mainly long fibers, able to absorb up to 12% of its own weight in water. The fibre are twice as strong as those of cotton and five times as strong as those of wool.
- Uses: The longer fibres are used for spinning into yarn and weaving, knitting and geo-textiles.

Flax (Linum usitatissimum L.)

Technical application of flax fibres (Smeder et al., 1996)

Building materials	Polymer compounds	Geotextiles	Pulp and paper	Cellulose	Absorbent materials	Others
Insulation material for bulk insulation	Thermoplastic composites	Ground protection during construction	Newsprint	Carboxymethyl- cellulose	Diapers	Friction lining
Reinforcement of concrete	Thermoset composites	Weed control	Printing and writing paper	Viscose fibres	Sanitary towels	Gaskets
Particle board	Rubber composites	Gardening	Sack paper	Microcristalline cellulose	Industrial wipes	Nonwovens
Fibre board	Construction composites	Road construction	Folding boxboard		Napkins	Filters
Gypsum wallboard		Erosion control mats	Recycled paper			Drain-pipes
Vinyl floor carpet			Liner and topliner			
Acoustical damping materials			Tissue and fluff pulp			
			Fluting and middle of board			

Hemp (Cannabis sativa L.)

Family: Cannabaceae

- Habitus: annual
- Climate zone: Pannonian, Continental, Atlantic, Mediterranean North
- Temperature requirement: 10-35 °C
- Flowering with short photoperiod
- Growing season: spring summer
- Contraints of cultivations: Social and legal problems; irrigation (in South of Europe)
- Yield: 12-20 t ha⁻¹
- 25,000 diverse uses: high quality paper, rope, twine, cloth, non wowen material, geotextiles, strengthen cement blocks, fibreglass etc.

Kenaf (Ibiscus cannabinus L.)

Family: Malvaceae

- Habitus: annual
- Climate zone: Mediterranean North and South (with irrigation)
- Temperature requirement: 15-27 °C
- Growing season: spring summer
- Contraints of cultivations: irrigation (500 -600 mm) in Med S
- Yield: 8-22 t ha⁻¹ above ground dry biomass
- Products: stem's outer bark with the long soft bast fibers useful for cordage and textiles. Bast fibers up 20 to 25% of the stem on a dry weight basis. Stalk yields from 8 to 12 t ha⁻¹.
- Uses: cloths, rugs, rope, grass and erosion matt, kenaf-blend gred, core panels, composite with plastic polymers industry, fiber glass substitute, textile composite, animal bedding, particle board, industrial absorbent materials ecc.

IL KENAF: prodotti ottenuti dal kenaf

Organic absorbent

Polymer compounds

bioplastic for Hi-tech

Insulation material

Cups

Sweet and Fiber Sorghum (*Sorghum bicolor* L. Moench)

Family: Poaceae

- Habitus: annual
- Climate zone: Continental, Lusitanian, Mediterranean North and South
- Temperature requirement: 12-40 °C
- Growing season: spring summer
- Contraints of cultivations: irrigation in Mediterranean South (500 mm); few varieties
- Yield: 15-45 t ha⁻¹ (bioethanol 3000-6000 l ha⁻¹)
- Uses:; 1th and 2nd generation biofuel; particle board; pulp for paper

Yield variation in relation to water used by sweet sorghum cv. Keller in field experiments in South of Italy (1991-1994)

Early Sowing

Sweet Sorghum

Selection of lines for germination at low temperature (10°C)

Miscanthus spp.

Family: Poaceae

- Habitus: perennial
- Climate zone: Continental, Pannonian,

Atlantic, Mediterranean North and South

Temperature requirement: 5-35 °C

- Contraints of cultivations: not resistant to cold in the year of transplanting; irrigation in Mediterranean South (500-900 mm); agamic propagation;
- Yield: 15-32 t ha⁻¹
- Uses: biomass for heat and electricity; 2nd generation biofuel; sandwich materials with plastics or light metals;

Miscanthus floridulus

Miscanthus x giganteus

Saccharum aegyptiacum

Miscanthus sinensis

Produzione di biomassa secca aerea (kg m⁻²)

Giant reed (Arundo donax L.)

Family: Poaceae

- Habitus: perennial
- Climate zone: Lusitanian, Continental, Medite
 North and South
- Temperature requirement: 10-30 °C
- Harvest time: February

- Contraints of cultivations: irrigation in Mediterranean South (300 mm); agamic propagation;
- Yield: 15-42 t ha⁻¹
- Uses: cellulose for paper, sandwich materials with plastics or light metals; biomass for heat and electricity; 2nd generation biofuel
- Products: In Italy, this crop was used to extract cellulose for pulp since 1930 already, when Snia-Viscosa established a trademark for the production process of cellulose pasta for the production of

Above ground dry biomass according to the water used in Arundo donax L

Field propagation with stems or part of them

Apical portion

Median portion

Cardoon (Cynara cardunculus L.)

Family: Asteraceae

- Habitus: perennial
- Climate zone: Mediterranean North and South
- Temperature requirement: 5-30 °C
- Growing season: autumn winter spring
- Contraints to cultivations: None
- Yield: 8-22 t ha⁻¹
- Uses:; 2nd generation biofuel; biomass for heat and electricity; biodiesel from oil in the seeds; roots rich in inulin

Above ground dry biomass yield (t ha⁻¹) in relation to irrigation

Aboveground dry biomass

Castor bean (Ricinus communis L

Family: Euphorbiaceae

- Habitus: perennial
- Climate zone: Mediterranean North & South
- Temperature requirement: 5 35 °C
- Contraints of cultivations: genetic improvement, genotypes availability, harvesting
- Yield: 2-3 t ha⁻¹ of seed (50% seed oil); 15 -20 t ha⁻¹ of wood
- Uses: biodiesel, biomass for heat and electricity

Topinambur (Heliantus tuberosus L.)

Family: Asteraceae

- Habitus: perennial
- Climate zone: Lusitanian, Mediterranean North and South

- Temperature requirement: 10-30 °C
- Contraints of cultivations: genotypes availability, invasive plant
- Yield: 10-15 t ha⁻¹ (5000 l ha⁻¹)
- Uses:bioethanol

Reed canary grass (Phalaris arundinacea L.)

Family: Poaceae

- Habitus: perennial
- Climate zone: Pannonian, Continental, Atlantic,
- Temperature requirement: 5-23 °C
- Contraints of cultivations: invasive plant
- Yield: 12-15 t ha-1
- Uses: paper, biomass for heat; 2° generation Biofuel

