

Imperial College London

9 Partners, 3M (EU) Total 4.1M

Gail Taylor, 24 March, 2009 Madrid

Southampton

School of Biological Sciences

Policy Drivers for increased bioenergy

- 10% Renewable energy by 2010 and 20% by 2020. UK, European SET plan.
- 60% reduction in CO₂ emissions and first nation to have a climate change bill
- RTFO 5% by volume liquid fuels from renewable source by 2010 and 10% by 2020
- Bioenergy currently contributes

4.1 % to heat and electricity
2.5 % to liquid transportation (April 2008, from
0.5%) Taylor (2008), Energy Policy In Press

Bioenergy -concerns

- Greenhouse gas balance?
- Biodiversity? Loss of species?
- Other impacts?
- Food crop displacement and prices?
- Other indirect effects... tropical rain forests?
- Societal concerns? GM?
- Landscape-scale changes?
- Water use and management?

Feedstocks for bioenergy?

First generation crops

- Maize
- OSR
- Wheat grain
- Sugar beet
- Other oil crops from tropics -import
- Sugar cane (Brazil) import

Second generation dedicated lignocellulose

- Trees willow and poplar
- Grasses- miscanthus, switchgrass,
- Others

Forest ecosystems – 50% global vegetation C

Estimated total amounts of C in soil & vegetation in different terrestrial systems (Royal Society 2001). Pg C or Gt C

croplands	131	boreal forests	559
wetlands	240	temperate forests	159
tundra	127	tropical forests	428
	deserts & semides.	199	
	temperate grassland	ds 304	
	tropical savannas	330	
Total non fores	st 1,331	Total forests	1,146

Feedstock: Woody lignocellulosic biomass (2GC)

- Heat, power and liquid fuels (biological and thermochemical)
- •Vast UK, EU and global resource
- •Good GHG balance?
- •Grown on marginal and abandoned land..... No food v fuel
- •Biodiversity? Water use?

What feedstock traits need improving? Ideotype breeding?

Biomass Quantity -More biomass per

-Limited N and water inputs Biomass Quality Improved quality -lignin --cellulose -- hemicellulose -saccharification -calorific value

Sustainable – GHG balance, biodiversity, water use,

Addressing the yield gap in energy poplar – more biomass on

Systems Biology for optimised yield and lignocellulosic quality in energy

THE LINK BETWEEN GENOTYPE AND PHENOTYPE

Poplar for bioenergy – globally significant

More than 30 species, wide range of climates and soils

Large genetic diversity, large natural provenances (91%)

Interspecific hybridisation

P. SIGAUD

FAO; Ball, Carle and Del Lungo J. CARLE

Why is poplar the ideal bioenergy model? Full genome sequence (15 Sept 2006)

Small genome (similar to rice)

Diversity of species

Fast growing and perennial

Clonal

Transformation system

Genetic collections and molecular maps

Activation tagged populations

EST and BAC libraries

Genomic and post-genomic tools

Aims of ENERGYPOPLAR

- The aim of the project is to improve feedstock characteristics of poplar for bioethanol production
- Improved yield
- Improved saccharification
- Improved sustainability and water use efficiency
- Optimized LCA

- INRA, France- (F Martin) -mapping pop, association, mycorrhizal associations, genomics, ESTs, EVOLTREE, GM low lignin trees
- UPSC, Sweden (R Bhalerao) GM lines, HT phenotyping cell walls, transcriptomics, metabolomics, gene discovery platform
- Southampton, UK (G Taylor)- mapping pop, association, Carbon isotopes, QTL elucidation, saccharification
- Udine, Italy (M Morgante) Genotyping, HT SNPs discovery,
- Ghent, Belgium (W Boerjan) GM low lignin trees, mapping pop
- Gottingen, Germany (A Polle) GM trial, carbon isotopes, HT
- Imperial College, UK (R Murphy)- LCA, HT saccharification assay
- ALU, Germany (K Palme) Gene discovery, Systems Biology
- SweeTreeTechnologies (M Hertzberg)- commercialisation

Engineering Perennial Feedstocks for Biofuel

Workpackage 1

- Improve yield through genomics and genetical genomics
- Optimise shoot function using GM technologies
- Optimise root function using GM technologies

Five 'Poplar BIOMASS LOCI' identified in *Populus* following 10 years of research

Genetical genomics approach

- Improve density of markers on the key biomass LG and in PBL3 using SNPs.
- Conduct microarray experiment using 'biomass extremes'.
- Aim to identify key genes in the core regions of the QTLs:
 - Transcription factors potentially controlling biomass
 - Biomass related genes e.g. cell wall synthesis, sugar synthesis, cell cycle etc

Southampton

School of Biological Sciences

Physical CTCAG-34 Genetic CTCAG-N15 o 049x -1Cseq CTCAG-23 -1Cseq r-5Bseq -2Abseq -3Bseq -2Abseq -4Cseq -4C seq -3Bsea -5Bseq -6Bseq -8Cseq -7Dseq -7Dseq -8Cseq -6Bseg -9Cseq -9Cseq -11Aseq -11Aseq - PMGC 2571 PMGC_2571 -12Cseq -12Aseq -12Aseq ∼-12Cseq -13Cseq --13Cseq PMGC_2887 - PMGC 2887 -14Eseq CTCAG-38 **Bibbûass** - -15Dseq ORPM_149 -14Eseq ORPM 149 TF1seq -15Dseq TF2seq TF1seq TF3seq BIORHABS TF2seq TF6seq TF3seq TF7seq TF6seq FRUCseq FRUCseq -17Cseq -TF9seq TF9seq TF7seq E1seq -17Cseq -18Dseq -E1seq TF16seq -18Dseq pfkBseq TF16seq TF13seq -19Bseq AU-seq ЧpfkBseq TF13seq -19Bseq AU-seq PMGC 2786 -20Bb_2seq -20Bb_2seq • PMGC_2786

- Establish GM field trials of current and new material e.g. low lignin trees
- Establish high throughput phenotyping for lignin and cellulose traits
- Establish association genetics populations
- Undertake saccharification assay on 500 plus genotypes of *Populus* – SRC, GM, others

What is Saccharification?

- "The process of breaking down a complex carbohydrate into monosaccharide components"
- Breaking down ligno-cellulosic mass into glucose.
- This glucose can then be fermented to produce ethanol.

Saccharification potential of Populus?

- Identify natural genetic variation in glucose release across Family 331 genotypes (F2 mapping population) using a high throughput assay.
- Combine data with existing F331 markers to produce QTL and identify genes of interest.

Overview of Process

Wood Pre-treatment

• Wood ground to fine powder using 'Retsch 300MM Mixer miller'.

School of Biological Sciences

Results

Glucose release across F331 genotypes after 48 hours

- Genomics and breeding
- SNPs discovery and HT genotyping based on SNPs – areas of the genome and candidate genes of interest

• Select new trees for crossing with superior alleles

Workpackage 4

- Life Cycle Analysis
- Sustainability and ecosystem services
- Water use efficiency

Summary

- Poplar has potential, globally as a bioenergy feedstock crop
- Genomic approaches are beginning to unravel complex traits such as biomass, response to drought
- New Bioenergy Centres in the USA will invest massively in *Populus*. Europe should aim to remain competitive

