

European Workshop

Thermal Treatment of Sewage

Sludge for CHP Applications

Brussels, 15. – 16. September 2003

Percentage of Sludge Volumes by Disposal Channels in EC, 2002 and 2009

Key:

Inner Circle = Year 2002

Outer Circle = Year 2009

Price Trends by Services in EC, 2002

= Average Price

Water Content

Weight-Loss of 1 ton Sewage Sludge

throughout typical Sludge Treatment Route

Bio Solids Use and Disposal

Waste to energy by incineration of sludge cake at 20 – 40 DS with power production	Waste to energy by incineration of dried sludge at 90 % DS	The agricultural use of the dried sewage sludge as fertilizer and for the soil improvement		
Incineration and energy recovery of sewage sludge	Energy recovery from a plant processing dried sewage	Total Dry Substance on oats / container		
at an average DS content of 25% results in a power	sludge at 95% DS results in a power production of 700 –	Fertilizing without		
production of 250 – 300	1000 kW/TDS. The plant itself	sewage sludge 17.6		
kW/TDS. The incineration	has a typical parasitic power	with sewage sludge 1000 kg N / ha 37.6		
plant itself has a typical	load of 300 - 330 kW/TDS.	with sewage sludge 2000 kg N / ha 45.9		
parasitic power load of 250	The final product from the	with sewage sludge 4000 kg N / ha 49.6		
– 300 kW/TDS. The final product from the plant is an	plant is an ash that can be used as a raw material for	with sewage sludge 8000 kg N / ha 48.9 with artificial fertilizer		
ash that can be used as a raw material for manufacture of civil engineering products.	manufacture of civil engineering products.	1000 kg N / ha 42.9		

- Sewage sludge has a positive effect on plants and enables high yield
- Even overdosed the fertilizing effects remain due to high buffer capacity of sludge
- The organic compound of the sludge increase the humus content of the soil.

Conclusion:

Sewage sludge is a high efficiency Nitrogen fertilizer with additional ability to improve the soil due to the organic matters contained in the sludge. It also serves as a fuel resource for energy production. In both cases drying is the most beneficial way for its preparation.

Thermal Drying of Sewage Sludge

Convective Drying

The sludge is directly dried by the flue gas or hot air and the humidity is discharged.

Contact Drying

Heat is transported via a lateral surface to the sludge. The humidity evaporates and is discharged.

heating medium

Drum Drying System - Direct heated system

Daldowie (Glasgow)

- Plant Type: 12 Centrifuges D7LL, 6 Drum Drying Lines DDS 40
- Input: Industrial and municipal sludge
- Dewatering: from 2 to 28 % TS
- Drying: from 28 to 92 % TS
- Final Product: 1 6 mm granulate
- Evaporation rate: 22.000 I H₂O / h
- Start up: 2002

Louisville and Jefferson country (USA)

- Equipment Type: 4 x DDS 90
- Inlet: Biosolids, at 22% TS
- Product: 92 % TS; 1 – 4 mm Granulate
- Evaporation: $36.000 \text{ kg H}_2\text{O} / \text{hr}$
- Start up: 2002

Drum Drying System – Indirect heated system

DDS – Bran Sands Simplified Process Flow Diagram

Bran Sands

The peripheral equipment comprises:

- 3 parallel gas turbines (fired by natural gas, 5 MW each), supplying hot exhaust air (approx. 430 °C) as heating energy to the dryers and, more importantly, producing electric current supplied to the national grid.
- a complete sewage treatment plant for the filtrates produced in the sludge dewatering stage, for treatment up to receiving water grade.

Fluidised Bed Sludge Drying Plant

Palm 1

- Plant Type: CDS 60
 fluidized bed dryer
- Feed: bio and DAF sludge, Dewatered to 35 % DS
- Product: 95 % DS; 1 – 4 mm Granulate
- Evaporation: 6.000 l/h H₂O design
- Start up: 1999

Palm 2

- Plant Type: CDS 20 fluidized bed dryer
- Feed: bio sludge, Dewatered to 16 % DS
- Product: 95 % DS; 1 – 4 mm Granulate
- Evaporation: 2.000 I/h H₂O design
- Start up: 2002

Belt Drying System

Altenrhein (Germany)

- Equipment Type: Belt dryer (BDS)
- Inlet: Biosolids, Inlet Consistency at 28-30 % TS
- Product: 92 % TS;
 Granulate
- Evaporation: 400 kg/hr H_2O
- Start up: 2002

Comparison of the different dryer types

	DDS	CDS	BDS
Granulate	Dimensionally stable, round granules of 2 to 4 mm; Virtually dust free	Dimensionally stable, round granules of 2 to 4 mm Virtually dust free	Dimensionally stable, round granules of 1 to 8 mm
Energy sources for drying	Natural gas Bio-Gas Exhaust gases from gas turbine Exhaust gases from gas engine Wood-gasification process gas Thermal Oil	Steam @ 10 bar saturated Thermal oil Exhaust gases from coal fired power plants	Natural gas Bio-Gas Steam @ 4 bar saturated Thermal Oil Hot water Exhaust gases from processes at low temperature (~ 140°C)

Combination of dryers with CHP processes Block Flow Diagram

Eco-Dry Principle Block Diagram

Cyclone furnace

Drying and Incineration with combined Heat and Power

CO₂ Balance

