Biomass Production Chain and Growth Simulation Model for Kenaf

QLK5-CT-2002-01729

acronym: BIOKENAF

University of Thessaly (UTH)

Department of Agriculture,

Crop Production & Agricultural Environment

09.09.2004 08

The field experiments were carried out in Palamas Karditsa, western Thessaly, 3 km south east of the village of Palamas

coordinates: 39°25'43.4"N, 22°05'09.7"E, altitude 107.5 m

Task 2.2 Effect of different varieties, sowing dates and plant population on biomass yield

2x2x2 factorial completely randomized block design in 3 blocks.

Sowing date: 1-6-04

50% emergence: 5-6-04

100% emergence: 7-6-04

Start flowering: 11-9-04

(only Tainnung 2)

Sowing date: 1-7-04

50% emergence: 5-7-04

100% emergence: 8-6-04

Start flowering: - - -

Sampling times until now

• 4-7-04

• 21-7-04

• 4-8-04

• 19-8-04

· 8-9-04

Germination of kenaf varieties = 96%

Weight of 100 seed = 3gr

Fertilization

Basal dressing of 50 kg P and 100 kg K ha⁻¹ on 29-5-2004, Top dressing of 100 kg N ha⁻¹ (as ammonium sulphate) on 11-8-2004

Irrigation

The crop received drip irrigation for full matching the PET

in total 361 mm until 10/9/2004

9.09.2004.08,49

Task 2.2

 $S_2 V_1 D_2$

Block 2

Block 1

$$S_1=1-6-2004$$
 $V_1=$ Tainnung 2 $D_1=200000$ pl/ha $S_2=1-7-2004$ $V_2=$ Everglades $D_2=400000$ pl/ha

In each block 8 plots with all possible treatment combinations (2x2x2).

- Plot size: 3m x 13m = 39 m²
- 6 rows per plot

Distances:

- between the rows: 0.50 m
- within the rows: 0.05m (D2) 0.10m (D1)

Task 2.3. Effect of irrigation and nitrogen fertilization on biomass yield.

33x4 factorial completely randomized split-plot design in 3 blocks.

Sowing date: 1-6-04

50% emergence: 5-6-04

100% emergence: 7-6-04

Start flowering: 9-9-04

(only Tainnung 2)

Sampling times until now

- · 4-7-04
- · 21-7-04
- 4-8-04
- 22-8-04
- 9-9-04

Basal dressing of 50 kg P and 100 kg K ha^{-1} on 29-5-2004, Top dressing of 0-50-100 and 150 kg N ha^{-1} on 6-7-04

Water supplied as irrigation: (until 9/9/04) $I_1 = 25\%$ (90.2 mm), $I_2 = 50\%$ (180.5 mm), $I_3 = 100\%$ (361 mm)

Task 2.3

FACTORS

I N
IRRIGATION FERTILISATION

 $I_1=25\%$ of PET $N_0=$ control

 I_2 =50% of PET N_1 =50 Kg/ha

 $I_3=100\%$ of PET $N_2=100$ Kg/ha

 $N_3=150$ Kg/ha

Main plots: Irrigation Sub-plots: Fertilization

- Plot size: 6m x 6m = 36 m²
- 12 rows per plot

Distances:

- 0.50 m between the rows
- 0.10 m within the rows

Ground water level:

30-4-04 = 1,7 m

1-6-04 = 1.8 m

6-8-04 = 3.6 m

Soil moisture content was measured at 3 soil horizons weekly. Data are not yet processed.

The soil under study is an imperfectly drained, calcareous

(pH=8-8.2) loam (sand 40-42%, silt 40-41%, clay 18-19%)

developed in recent deposits and represents a large part of the west Thessaly lowland.

The soil has an organic matter content > 1% at depth of 50 cm

09 2004 08 49

Tainnung 2
10 days
after
emergence

Mechanic destruction of weeds

I₃ plants on 9/9/04

Tainnung 2, 9/9/04

Climatic conditions

Air temperature and precipitation (10-day mean values)

Evaporation: from 20-6-04 to 10-9-04 (450 mm) from 20-6-03 to 10-9-03 (400 mm)

Daily weather data, 2003-2004

RESULTS

Growth Characteristics

- Plant height (cm)
- Basal stem diameter (cm)
- · Number of main nodes per plant
- Plants per m²
- Dry / fresh ratio
- SLA (m² kg⁻¹)
- · LAI
- Assimilation rates

Biomass Production

- Fresh biomass (t ha-1)
- Total dry biomass († ha-1)
- Dry stem biomass († ha-1)
- Dry matter distribution

Plant height (cm)

- maximum growth rate 4.7 cm/day
- Same height as 2003 until now
- a slight superiority of I₃-irrigation
 - $\cdot I_3 I_1 = 35 \text{ cm}$ (253 J.day)

No effect of fertilization as in the first year

20 cm smaller 51 plants than in 2003

40 cm smaller 52 plants than in 2003

max growth rate:

 S_1 : 4.4 cm/day

 S_2 : 4.0 cm/day

(at early development stage)

A high superiority (LSD_{0.01}) of S_1 sowing

No effect of plant density.

A slight superiority of Tainnung 2 was observed in the last sampling (same as 2003)

Basal Stem diameter (cm)

2.3 cm maximum for S_1 1.78 cm maximum for S_2 on 252 J. Day

A high superiority $(LSD_{0.01})$ of S_1 sowing throughout the growing period until now

minimal effect of plant density

No effect of variety

Number of main nodes per plant

A high superiority (LSD $_{0.01}$) of S $_1$ sowing throughout the growing period until now

Strong linear increase of node number with basal stem diameter

Plants per m²

D₂ plantation fluctuated around 26 plants per m² as in the first experimental year, due to the sowing machine

D₁ plantation fluctuated around 20 plants per m²

Dry / Fresh ratio

Specific Leaf Area (SLA, m²kg⁻¹)

SLA took values around 22 at the early development stage

SLA remained in the range 16-19 until 9-9-2004 (same as 2003)

A slight but not significant superiority of S_2 sowing time was observed as in 2003

No effect of plant density as in 2003

No effect of variety as in 2003

Leaf Area Index (LAI)

High superiority of S_1 versus S2 sowing time

Superiority of Tainnung 2 versus Everglades 41 after 15-8-04

No effect of plant density

LAI reached somewhat lower values than in 2003

Photosynthesis

Data collected:

• Assimilation rate in temperature rage $0-40\,^{\circ}C$ in radiation rage $0-800\,^{\circ}W/m^2$ at different development stages

• Respiration rate in temperature range 0-25 °C

Data still under processing

Tainnung 2, maximum assimilation rate

Fresh Biomass (t ha⁻¹)

A high superiority $(LSD_{0.01})$ of S_1 sowing

Reduced fresh biomass production than in 2003 (30% for S_1 and 40% for S_2)

No effect of plant density

A slight superiority of Tainnung 2 vs. E-41

Total Dry Biomass (t ha-1)

A high superiority (LSD_{0.01}) of S_1 sowing

Maximum growth rates

S₁: 240 kg ha⁻¹

S₂: 150 kg ha⁻¹

S₁ sowing time (2004) reached similar level with (2003) until now

 S_2 sowing time (2004) reached 2.3 t under (2003) until now

No effects of plant density and variety

Dry Stem Biomass (t ha-1)

1 and 2.5 t less biomass than in 2003 respectively for S_1 and S_2 sowing times

S₁ sowing time combines the 70% of total dry biomass (252 J. Day)

S₂ sowing time combines the 55% of total dry biomass (252 J. Day)

A high superiority $(LSD_{0.01})$ of S_1 sowing

No effect of other treatments

Dry Matter Distribution

Not yet ready

The field experiments are being continued...