

Biomass Production Chain and Growth Simulation Model for Kenaf

Work Package 5: Utilisation of kenaf for industrial products and energy.

S.J.J. Lips H.W. Elbersen department Fibre & Paper technology

Introduction

- What is ATO
- What is the role of ATO in this project
- Presentation of BTG and thermal conversion methods by Mr. Douwe van den Berg


- Agro Technological Research Institute

 (For and with Industry, 70% Industry)
 - Food & Food Processing
 - Agro & Industrial Production Chains
 - Renewable Resources
 - * Polymers, Composites & Additives
 - Bio-conversion
 - * Fibre & Paper Technology

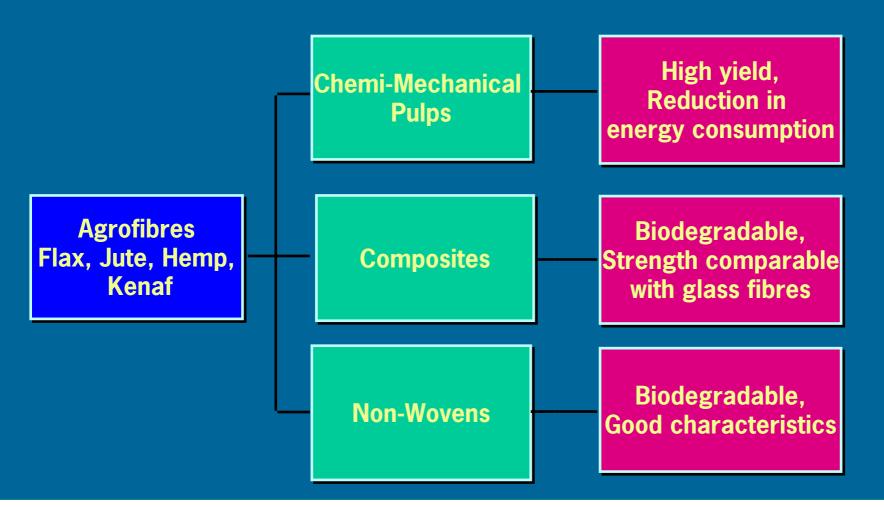
Facilities

- Head building:
 - offices
 - laboratoria
 - technology halls
 - library and meeting rooms
- 3 Technological facilities
- 5 Qualitrons

Fibre & Paper Technology

• Paper Technology

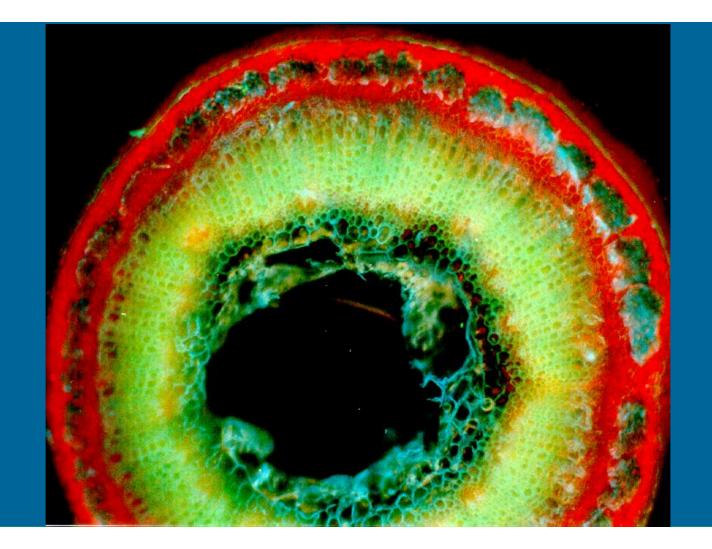
- influence of fibre raw material and treatment on paper quality
- Biomass for energy
- Agricultural fibres for bio-composites
- Industrial fibre crops for building materials


Related projects

Some of the related projects within ATO

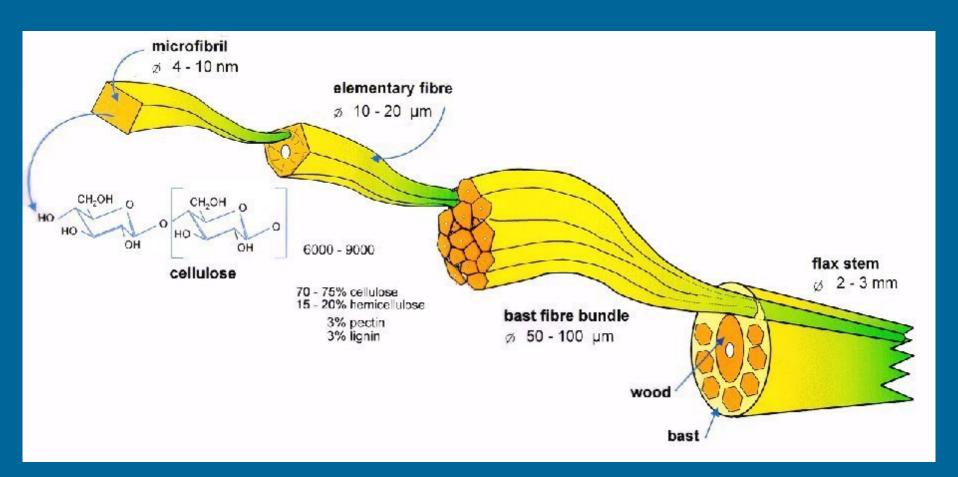
- Paper from hemp and green jute
- Optimal fibre quality from hemp
- Coir based building material
- bio-ethanol from lignocellulose
- database biochemical composition lignocellulosic materials
- validation of raw material from kenaf (Fair CT9616-1997)
- Jute composites
- Switchgrass for fibre products and bio-energy
- Concept development multifunctional crop and land use

Why are Bast Fibres from Non-Wood Fibrecrops interesting Raw Materials?



Fibre application and quality demands

	_			uo	nt		ble	
	strength	length	fineness	fibrillatio	absorben	durable	bio- degrada	Low ash
textile	+++	+++	+++	-	+	+	+/-	++
composite	+++	+(+)	++	-	-	+	+/-	+
non-woven	+	++	++	+	++	+	++	++
paper	++	+	++	++	+/-	+	-	++
geo-textile	+	++	-	-	+	++	++	-
compost	-	-	-	-	-	-	++	-
bio-energy	-	-	-	-	-	-	-	+



Flax Morphology

Flax Morphology

Fibre properties

	Jute Sliver	Hemp bastfibre	Kenaf bastfibre	
Morphology				
fibre bundle length	15-36	100-300		cm
fibre length	0.8-7	5-55	2-6	mm
fibre width	5-25	16-50	14-33	μm
cell wall width	2-5	5-10	3.7	μm
Strength				
Tensile	200-450	310-750	550-700	Мра
Stiffness	20-55	30-60		GPa
Strain at rupture	2-3	2-4	2-3	%
Density	1400	1480		Kg/m ³
Chemial compositio	n			
Ethanol /toluene extra		1.5	1.1	w%
Ethanol extract	0.3	0.3	0.1	W%
Hot water extract	1.3	5.1	2.9	w%
Cellulose	59.4	70.1	56.0	W%
Hemicellulose	10.7	8.7	13.3	W%
Pectin	2.6	3.1	3.1	w %
Lignin	2.0 14.6		11.9	
	14.0	3.8	11.9	W%

Fibre properties

• Fibre properties and chemical composition varies with:

- growing conditions
 - * soil, climate, fertilisation etc.
- cultivar
- maturity
- plant part
- post harvest handling
- All these variations can influence the quality for fibre and energy applications

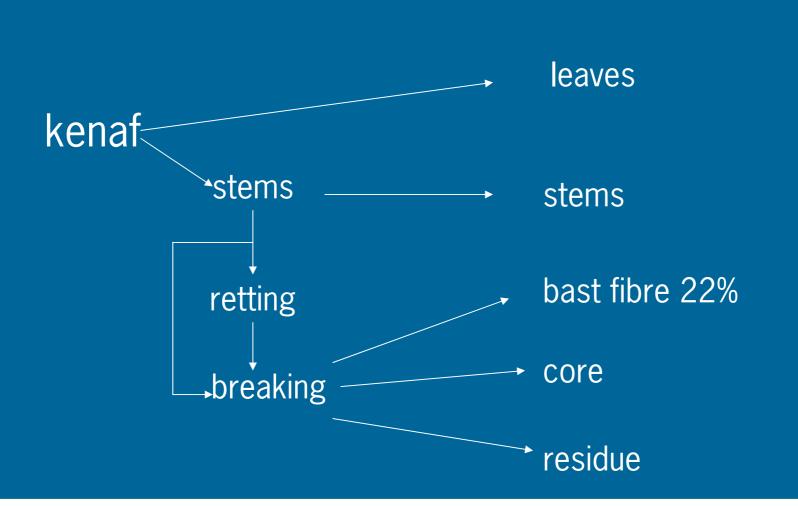
Role of ATO in this project

• Participant and leader work package of WP5

Work package 5

- Task 5.1.1 Fractionating of kenaf stems (ATO)
- Task 5.1.2 Market and techno-economic feasibility studies for industrial application. Application tests on two or three selected areas (ATO)
- Task 5.2 Thermal conversion experiments with combustion, pyrolysis and gasifier equipment (BTG and CRES)
- Biomass has to be delivered by participants field trials

5.1.1: Kenaf fractionating


• Leaves in the field

- stems
 - bast fibres
 - core fibres
 - residue

• process dependent residue

5.1.1: Kenaf fractionating

5.1.2: Market and techno-economic feasibility studies for industrial application

- Market and literature review
 - Composites
 - Building materials
 - Nonwovens
 - Paper & board
 - Absorption particles
- Testing of two or three applications selected from the market and literature review
- ?? Consultation of Industrial Parties?

Extruder

Extrusion

- defibration
- chemical treatment
- composite granules

Extrusion of jute fibre compounds

Refiner

• Refining for board and paper

- defibration
- chemical treatment
- fibrillation for paper

Refining for paper or board

5.2: Thermal conversion experiments

- (co-) combustion
- pyrolysis
- gasification

