

Biokenaf project thermochemical conversion tests

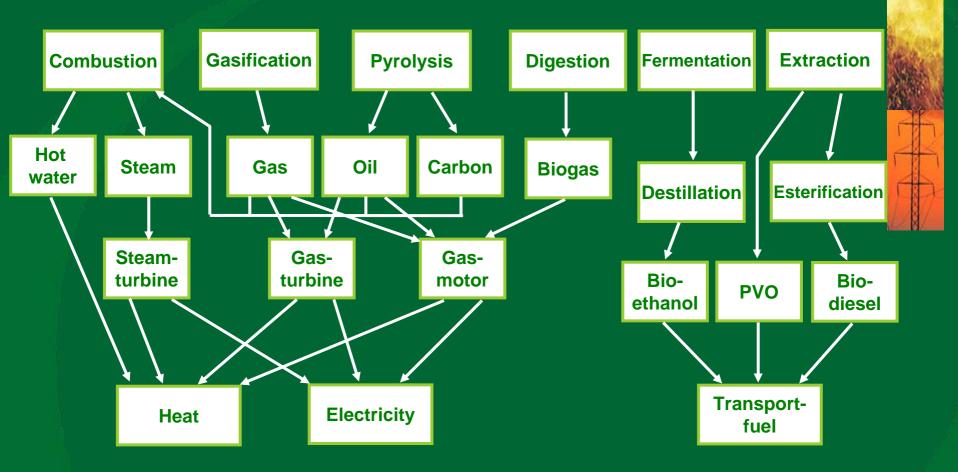
Progress meeting in Volos, November 2005

Douwe van den Berg
BTG biomass technology group bv
vandenBerg@btgworld.com

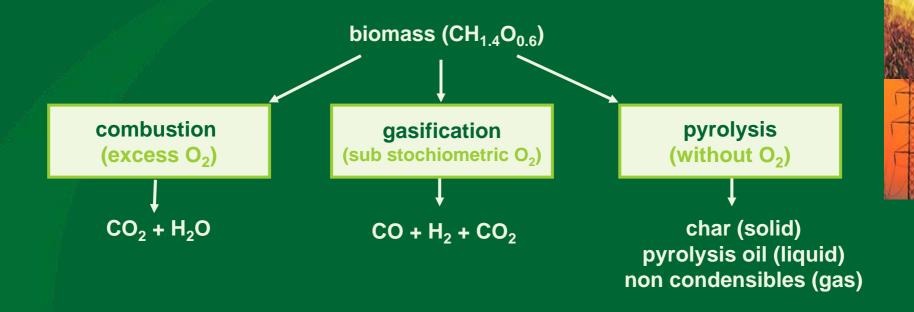
Experimental work of BTG in Kenaf project

WP 5: thermochemical conversion

- Soal: evaluation of suitability of kenaf for thermochemical energy applications
- D12: quality characteristics and energy potential as a biofuel for thermochemical conversion processes (month 12 - 40)
- > Equipment
 - ash fusibility test
 - combustion device
 - gasifier (fluidized bed)
 - rotating cone reactor (pyrolysis)
- > Samples
 - kenaf whole crop
 - core fiber produced after bast fiber removal


Overview of presentation

- > Activities presented in Catania (July 2005)
 - Feeding of whole plant and core material
 - Ash behaviour
 - Gasification experiments
 - Combustion experiments
- > Activities presented in this presentation
 - Pyrolysis experiments



Overview conversion-technologies

Thermochemical conversion

Introduction State of the art carbonisation combustion esterification fermentation digestion gasification pyrolysis HTU supercritical

commercial

development

Pyrolysis - example

- > BTG 2 t/hr commercial plant under construction in Malaysia
- > Bio-oil for co-combustion in power plants
- > Research is being carried out to upgrade bio-oil to transport fuel by water removal and hydrotreating

Feeding

Kenaf properties and preparation

- > Bulk density
- > Particle size and size distribution
- > Flow properties

	Bulk density [kg/m3]	Particle S & D	Flow properties	Moisture [wt%] _{wb}
Core	120		+	16.4
Whole plant	60			15.7
Whole plant milling	80	-	-	15.7

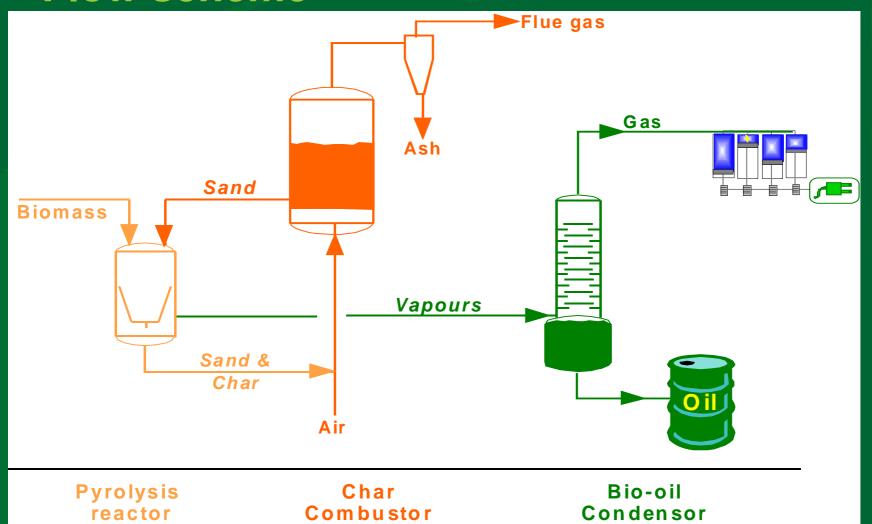
Feeding

Kenaf properties and preparation

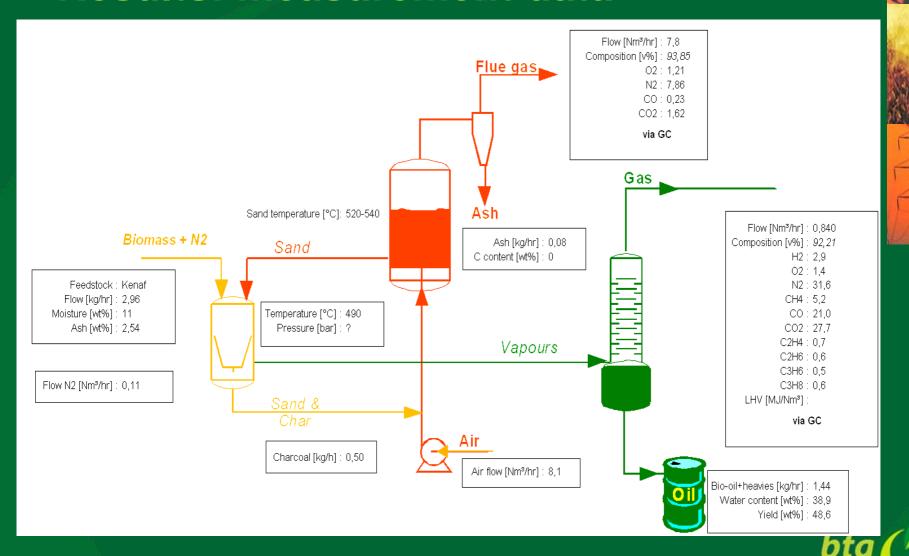
Milling

Experimental set-up (new for Kenaf)

Feeding system



Bio-oil condensing system


Pyrolysis reactor system (placed in hotbox)

Flow scheme

Results: measurement data

Results: mass balance

		Overall	Biomass
IN	(kg/hr)		
	Biomass	2,96	2,96 (100%)
	Air	10,47	
	Nitrogen	0,14	
	Total, in	13,57	2,96 (100%)
OU	IT (kg/hr)		
	Bio-oil	1,44	1,44 (49%)
	Heavies	0	0
	Ash	0,08	0,08 (3%)
	Pyrogas	1,20	
	Combugas	10,92	
	Charcoal		0,50 (17%)
	NC gasses		0,87 (30%)
	Total, out	13,63	2,89 (98%)

Results: bio-oil yield and quality

- > Total bio-oil yield is 49%
 - comparable / higher than other herbacious crops (about 45 - 55 wt%)
 - lower than wood (about 70 wt%)
- > High water content in bio-oil (38 wt%) and strong phase separation
 - water orginating from water in feedstock and
 - water formed during reaction and catalysed by minerals

Conclusions

- > Whole plant needs additional pre-treatment to allow stable and trouble free feeding
- > Compared to wood design of feeding system needs modifications (larger volumes)
- > Pyrolysis needs additional drying and/or post-treatment to obtain a one-phase oil (pyrolysis as such is no problem)

