

Biokenaf Seminar

Thermochemical Conversion of Kenaf

Bologna, 9 May 2006

Douwe van den Berg BTG biomass technology group bv vandenBerg@btgworld.com

BTG biomass technology group by

> Dutch private company with staff of 35 persons

> Conversion of biomass into fuels and energy

Mission: contribute to the accomplishment of a significant share of bio-energy in the total of primary energy carriers in a socio-economic and environmentally sound way

> Two divisions:

- Research & Development
- Consultancy & Project Development

> Projects in > 80 countries; > 50 systems installed

Overview of presentation

- > Introduction thermal conversion processes
- > Feeding of core and whole plant material
- > Ash behaviour
- > Gasification experiments
- > Combustion experiments
- > Pyrolysis experiments

Overview of presentation

- > Introduction thermal conversion processes
- > Feeding of core and whole plant material
- > Ash behaviour
- > Gasification experiments
- > Combustion experiments
- > Pyrolysis experiments

Introduction Bio-energy conversion chain

Introduction Bio-energy conversion chain

Introduction Overview conversion-technologies

Introduction

Biomass technology combinations

- > "dry" biomass
 - combustion, gasification, pyrolysis
- > "wet" biomass
 - (co-)digestion
 - new technologies (HTU, SCW)
- > oil and fat
 - combustion, gasification, (co-)digestion
- > oil containing crops
 - extraction and esterification
- sugar and starch containing crops
 fermentation

Introduction

Biomass technology combinations

- > "dry" biomass
 - combustion, gasification, pyrolysis
- > "wet" biomass
 - (co-)digestion
 - new technologies (HTU, SCW)
- > oil and fat
 - combustion, gasification, (co-)digestion
- > oil containing crops
 - extraction and esterification
- sugar and starch containing crops
 fermentation

Introduction Combustion - example

biomass-plant Lelystad The Netherlands (NUON)

- capacity: 1,7 MW electric + 6,5 MW thermal
- fresh wood residues, $25.000 \text{ ton}_{45}/a$
- fixed bed combustion with steamcycle
- $\eta_{el} \approx 16\%, \, \eta_{th} \approx 66\%, \, \eta_{tot} \approx 82\%$
- investment about 6.900 €/kW_e

Introduction Gasification - example

biomass-gasifier Güssing (Austria) - 2001

- capacity: 2 MW electric, 4,5 MW thermal
- wood chips
- fluidised bed gasifier with gas engine
- $\quad \eta_{el} \approx 25\%, \ \eta_{tot} \approx 80\%$
- total total investment around 4.500 €/kW_e

Introduction Pyrolysis - example

- > 12 000 t/yr commercial plant recently implemented by BTG in Malaysia
- > Bio-oil for (co-)combustion in power plants
- > Research is being carried out to upgrade bio-oil to transport fuel by water removal and hydrotreating.

Overview of presentation

- > Introduction thermal conversion processes
- > Feeding of core and whole plant material
- > Ash behaviour
- > Gasification experiments
- > Combustion experiments
- > Pyrolysis experiments

Feeding Kenaf samples

> Samples received April 2005

- > "whole plant"
 - 2004 harvest from CETA
 - chipped and dried under roof
- > "core material"
 - 2005 harvest from CETA
 - seperated by KEFI

Feeding Kenaf properties and preparation

Milling

Feeding Kenaf properties and preparation

- > Bulk density
- > Particle size and size distribution
- > Flow properties

	Bulk density [kg/m3]	Particle S & D	Flow properties	Moisture [wt%] _{wb}
Core	120	+	+	16.4
Whole plant	60			15.7
Whole plant milling	80	-	-	15.7

Feeding Feeding section reactor and calibration

Feeding system

Overview of presentation

- > Introduction thermal conversion processes
- > Feeding of core and whole plant material
- > Ash behaviour
- > Gasification experiments
- > Combustion experiments
- > Pyrolysis experiments

Ash behaviour

Ash content and ash melting

> Both ash content and ash quality important

> Ash melting can cause damage to bio-energy system
 > Ash melting can cause sintering of bed material

Ash behaviour Ash fusibility test

- > Seger cone method
- > ASTM D2013 D3174 (for ash from coal and cokes)
- > Oxidising (air) and inert environment (N2)

Ash behaviour Ash fusibility test - example

ash cones

Ash behaviour Ash fusibility tests - results

	Ash content	Initial Deformation	Fluid
	[wt%]	Temperature	Temperature
	0.0	> 4070	
Kenat Core	2.0	> 1270	>> 1270
Kenaf Whole plant	2.4	> 1270	>> 1270
Beech (hardwood)	2.3	> 1270	>> 1270
Pyne (softwood)	0.3	> 1270	>> 1270
Miscanthus	2.0	1060	1210
Switch grass	4.8	1080	1230
Arundo	4.5	1000	1150

Ash behaviour Ash fusibility tests - results

Non-oxidising environment

Oxidising environment

Overview of presentation

- > Introduction thermal conversion processes
- > Feeding of core and whole plant material
- > Ash behaviour
- > Gasification experiments
- > Combustion experiments
- > Pyrolysis experiments

Gasification Experimental set-up [

Gasification Flow scheme

6

Gasification Axial temperature profile

btg

Gasification				
Results				
	Core	Whole plant		
Biomass feed				
Flow rate	7.1	6.7	kg/hr	
Energy in	25	23.6	kW	
Air supply				
Flow rate	8.4	5.8	kg/hr	
Product gas				
Flow rate	15.7	12.3	kg/hr	
Composition			-	
H ₂	9.1	11.9	vol%	
CO	8.1	8.2	vol%	
CO ₂	20.3	23	vol%	
CH4	2.6	3.3	vol%	
C2+	1.5	1.9	vol%	
N ₂	58.3	51.7	vol%	bta

Gasification Results		/	
	Core V	Vhole plant	
Product gas			
Traces			
NH ₃	> 100	> 100	ppm
H ₂ S	40	40	ppm
HCI	< 1	< 1	ppm
Tar	0.5	0.3	g/m3
nergy balance			
Biomass, in	25.0	23.6	kW
Gas, out	13.6 (= 54.4 %)	11.4 (= 48 %)	kW
Tar, our	1.8 (= 7 %)	1.1 (= 5 %)	kW
Ash/Char, out	1.8 (= 7 %)	1.4 (= 6 %)	kW
Total, out	17.3 (= 68.8 <u>%</u>)	13.9 (= 58.7%)	kW

Overview of presentation

- > Introduction thermal conversion processes
- > Feeding of core and whole plant material
- > Ash behaviour
- > Gasification experiments
- > Combustion experiments
- > Pyrolysis experiments

Combustion Experimental set-up [

- > Fluidised bed combustion
- > Experimental set-up and flow scheme corresponding to gasification tests

Combustion Results - gas analysis Kenaf core

Combustion Results - NOx emissions Kenaf core

Overview of presentation

- > Introduction thermal conversion processes
- > Feeding of core and whole plant material
- > Ash behaviour
- > Gasification experiments
- > Combustion experiments
- > Pyrolysis experiments

Pyrolysis Experimental set-up [

Feeding system

Bio-oil condensing system

bt

Pyrolysis reactor system (placed in hotbox)

Pyrolysis Flow scheme

Pyrolysis Results: mass balance

		Overall	Biomass
IN (k	g/hr)		
	Biomass	2,96	2,96 (100%)
	Air	10,47	
	Nitrogen	0,14	
1	Total, in	13,57	2,96 (100%)
OUT	(kg/hr)		
	Bio-oil	1,44	1,44 (49%)
	Heavies	0	0
	Ash	0,08	0,08 (3%)
	Pyrogas	1,20	
	Combugas	10,92	
	Charcoal		0,50 (17%)
	NC gasses		0,87 (30%)
	Total, out	13,63	2,89 (98%)

btg ()

Pyrolysis

Results: bio-oil yield and quality

- > Total bio-oil yield is 49%
 - comparable to other herbaceous crops (45 55 wt%)
 - lower than wood (about 70 wt%)
- > High water content in bio-oil (38 wt%) and strong phase separation
 - water originating from water in feedstock and
 - water formed during reaction and catalyzed by minerals

Concluding

Is kenaf a suitable energy crop?

- > Feeding
 - Whole plant needs additional pre-treatment to allow stable and trouble free feeding
 For core material design of feeding system needs modifications compared to wood (larger volumes)
- > Ash melting
 - High initial deformation temperature compared to other crops prevents ashmelting problems at thermal conversion
- > Thermal conversion

 - Low water content if harvested after winter (fibre quality?)
 Combustion of whole plant gives high NOx emissions
 Further optimisation gasification to obtain higher efficiency
 Additional drying and/or post-treatment needed to obtain a one-phase oil (pyrolysis as such is no problem)
- > General
 - Better results for core compared to whole plant material (better morphology and lower N-content)
 Economy determines (costs kenaf vs. other biomass residues/crops)!

Thank you for your attention!

