

Results since last meeting

Work Package 5: Utilisation of kenaf for industrial products and energy.

S.J.J. Lips department Fibre & Paper technology Madrid 27 September 2006

Content

- Additional oil absorption experiments.
- Testing of composites with microbial affected fibres.
- Extra tests of kenaf mats under high humidity

Oil absorption kenaf core and other materials

Oil absorption of kenaf core

Oil absorption kenaf core and other materials

Oil absorption of milled kenaf core and milled other materials

Oil absorption of milled kenaf core and milled other materials

Oil absorption kenaf core and other materials

Conclusions – oil absorbtion

- Kenaf core as received shows low level of oil. The level is comparable to that found by Ghalambor
- Kenaf core is not a better oil absorber than the other tested organic materials
- Extra milling increases the oil absorption capacity

Conclusions – oil absorbtion

Kenaf pith absorbs 200% more oil than kenaf core

 Milled kenaf core absorbs 500% more oil than milled kenaf core. This is comparable to the ratio found by Ghalambor

Strength fibres bundles

 Weak fibre bundles limit the application to insulation mats. Long fibres for woven applications are not possible.

- Strong fibres make applications like textiles and automotives possible.
- If strength of these fibres is too low they cannot be used for moulded composites.

Tensile fracture of a kenaf fibre bundle

Clamp distance 3.2 mm

Warm water retting

• 7 days

2 portions of 70 gram in water bath 33 to 35 °C

• Yield 72%

Tensile fracture of a kenaf fibres

Material	Tensile strength (MPa)	St.dev	n
Kenaf			
FAIR retted	556 – 682		
FAIR green decorticated	276 - 435		
CETA fibres	343 - 486		
Uni Catania fibres	425	41	3
Uni Nova fibres	374	69	3
Uni Nova fibres retted	462	88	5
Flax	500-880		
Hemp	400-750		
Jute	351-468		
Sisal	650		

fibres CETA
In the field during winter

Retted fibres UniNova Lisboa harvested before winter

Kneading of the fibres with PP

fibre-PP mixture

Breaker

Moulding machine

Testing Kenaf-Polypropylene composite

Test pieces

Bending test

Testing Kenaf-Polypropylene composite Charpy test

Testing Kenaf-Polypropylene composite Charpy test

Strength properties of kenaf fibres/ PP compounds

Material	Flexural Modulus [GPa]	Flexural Strength [MPa]	Strain [%]	Charpy impact [kJ/m2]
CETA	3.3 (0.2)	53 (1)	3.6 (0.1)	12 (1)
CETA +MAPP	3.2 (0.1)	71 (1)	4.1 (0.1)	12 (2)
UniNova +MAPP*	3.1 (0.2)	70 (1)	4.2 (0.1)	13 (2)

^{*}warm water retted

Strength properties of kenaf fibres/ PP compounds

Material	Flexural Modulus [GPa]	Flexural Strength [MPa]	Strain [%]	Charpy impact [kJ/m2]
CETA*	3.3	53	3.6	12
CETA +MAPP	3.2	71	4.1	12
UniNova +MAPP	3.1	70	4.2	13
FAIR unretted	4.0	53	3.1	11
FAIR retted	4.1	55	3.2	12
Jute	3.2	69	4.8	18
Hemp	2.7 - 3	59 - 67	4.8 – 5.3	13 - 19

^{*}fibres produced by CETA and extracted by KEFI

Conclusions Kenaf/PP compounding

- CETA/KEFI fibres can be used for compounding, but composites are less strong than flax or hemp composites
- Retted kenaf fibres harvested in autumn did not give stronger composites than CETA/KEFI fibres
- Quality of the fibres in relation to harvest time and extraction method must be further investigated

Moisture absorption of natural fibres

Moisture uptake of insulation mats under semi- aerobic conditions

Moisture uptake of insulation mats under semi- aerobic conditions

Moisture absorption insulation mats under aerobic humid conditions

Moisture absorption insulation mats under aerobic humid conditions

Moisture absorption of fibre mats

 Kenaf mats show no visible microbial degradation at 94% RH and 23 °C.

 Flax mats with fire retardants show high water absorption in humid air.

New project?

- Production of higher quality fibres, based on controlled retting or other extraction steps
- De-gumming process Gruppo Fibranova like in HEMPSYS Project?
- Decortication in field?
- Selection of kenaf varieties with early end of life cycle?

