Some Aspects of the Environmental Impact Assessment of Kenaf production

Ana Luísa Fernando

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
Portugal

Ecological criteria to be considered

- **Energy budget**
- **Emission of greenhouse gases**
- **Emission of acidifying gases**
- **Emission of ozone depleting gases**
- Emission of minerals to soil and water
- **Emission of pesticides**
- **Erosion**
- **⇔** Groundwater depletion
- **⇔** Use of resources
- **♥ Waste production and utilization**
- **Contribution to biodiversity**
- **♥ Contribution to landscape values**
- **Other criteria**

Socio-economic criteria to be considered

- **♥ Costs of energy produced or costs of the product produced**
- **♥** Costs of abated CO₂ emission
- **Employment creation**

Energy input in the Production phase:

	FACTOR	
Nfertilizer	0.0386	GJ.kg-1
Pfertilizer	0.0076	GJ.ha-1
Kfertilizer	0.003	GJ.ha-1
Seed	1	GJ.ha-1
pesticides	X	
Machinery	8.7	GJ.ha-1
Irrigation	0.00131	GJ.m-3
drying and storage of biomass at the farm	X	

- ⇒ Varieties (no ≠)
- **⇒** Sowing dates
 - ⇒ earlier sowing, more irrigation, more energy
- **⇒** Sowing densities
 - ⇒ Higher
 nºseeds/m²

- N_{fertiliser}
 ⇒ Higher N
 ⇒ Higher E_{input}
- ⇒ Irrigation level⇒ Higher I⇒ Higher E_{input}

But are those differences really important? compared to the hypothetical energy output?

⇒E_{input} << E_{output}

⇒Higher Prod

⇔ Higher E_{output}

Productivity:

Early sowing > Late sowing

40 seeds/ $m^2 > 20$ seeds/ m^2

Everglades 41 > Tainung 2

⇒E_{input} << E_{output}

⇔Higher Prod

⇒ Higher E_{output}

Productivity:

10 < **125** < **150** < **1100**

N0 = N75 < N150 kg/ha

Emission of Greenhouse Gases

⇒CO₂ emitted << CO₂ avoided

⇒Higher Prod

⇒Higher CO2 avoided

Emission of Greenhouse Gases

⇒CO₂ emitted << CO₂ avoided

⇒Higher Prod

⇒Higher CO2 avoided

Emission of acidifying Gases (NH3, NOx e SO2)

⇒ Acid gases emitted << acid gases avoided
</p>

⇒Higher Prod

⇒ Higher acid gases avoided

Emission of acidifying Gases (NH3, NOx e SO2)

- **⇒**Higher Prod
- ⇒Acid gases emitted < acid gases avoided
 </p>
- **⇒Lower Prod**
- ⇒Acid gases emitted = acid gases avoided

Emission of ozone depleting gases

N₂O is the only gas considered

No differences, the same applied Nitrogen

Emission of ozone depleting gases

N₂O is the only gas considered

Higher Napplied
Higher emissions

Emission of Minerals to Soil and Water

N, P, K Surpluses = N, P, K input - N, P, K output **Fertilisers Air Deposition Productivity** Rain/Irrigation Water Mineral content NH_3 volatilisation N_2O emissions **Mineral content** immobilised in roots and rhizomes

Emission of pesticides

- amount of pesticides per group (herbicides, fungicides, insecticides and other pesticides) that is used
- scores of harmfulness of the several applications are applied
- total score on pesticides is calculated, indirect effects are analysed

Soil Erosion

- division of the crop growth into stages

Harmful Rainfall

Groundwater depletion

- water use of the crop during its growth
- additional water use caused by irrigation

Use of Resources

Information collected concerning

- exhaustion of fossil energy
- exhaustion of fertilizer ores (K and P)

Waste production and utilization

- possible uptake of contaminants
- possible formation of ashes and if they are dumped, particularly when considering the gasification or combustion conversion processes
 - reuse of residual materials
- Contribution to biodiversity
- Contribution to landscape values

should also be considered

• To be followed...