

Solar Thermal Systems in Buildings

Dimitrios Chasapis

R.E.S. Technology Eng CRES Solar Thermal Department

Why solar thermal?

Get the big picture!

New Admiral 21 Portable with life-size rectangular screen...from \$15995!

almost all picture, this new 21" Portable TV, originated I developed by Admiral! 40 square inches more picture n ordinary 19" TV...on a flat-faced, movie-square screen in the same size cabinet as most 19's!

Admiral quality precision-engineering hugs the compouts to the tube, makes it secure to take the jobs and jars ortable gets. Out-front speaker for richer sound, new is-rule dial for UHF tuning, Telescopic dipole antenna,

all 82 UHF/VHF channels. See this slim new Adn Portable TV... there's nothing finer at any price.

Contents

- Solar thermal collectors
 - Collector types and uses
- Domestic (Sanitary) hot water preparation
 - DHW heating systems
- Combi systems
 - Operation, properties and examples
- Solar cooling (Solar Combi+) systems
 - Solar chillers, properties and examples
- High-Combi
 - High solar fraction (<80%) heating and cooling system

Solar thermal collectors

flat plate

vacuum

(evacuated tubes)

unglazed (plastic)

Flat plate collectors

Flat plate collectors

Absorption surface

Vacuum tube collectors (evacuated tubes)

Source :CREST, Loughborough Uni

Collector type efficiencies

Efficiency of different collector types

Solar thermal collector characteristics

Collector Technology	Cost	Performance (kWh/m²/year)	Typical Use	
Unglazed	Low	300	Pool Heating	
Flat Plate Collectors (Black paint)	Mid	650	Pool Heating, DHW	
Flat Plate Collectors (Selective surface)	Mid	700	DHW, Space Heating, Solar Cooling	
Vacuum Tube	High	850	Space Heating, Solar Cooling	

DHW Preparation

DHW heating systems

Solar thermal systems Thermosyphonic

Open Circuit

Closed Circuit

Πηγή:Target/DGS

Solar thermal systems

Forced circulation

Source:IfaS

Combi Systems

- Operation, properties and examples

«combi» systems General description

"Solar combisystems" or "combi": solar thermal systems used to for space and domestic water heating.

10 basic variations (International Energy Agency – IEA, Solar Combisystems, Solar Heating & Cooling Programme, Task 26)

Combi systems

Schematic diagram of a combi system

Combi system

Schematic diagram with combi-tank

Combi system combi-tank

Combi systems Properties

- Higher Energy Saving
 - Introduction of the solar technology to space heating
 - Vast potential
- Cost comparable to common solar thermal systems
- Possibility to combine with (solar) space cooling systems

Combi systems Advantages

Source: Sonnenkraft

- Used in:
 - Houses
 - Hotels Hospitals etc.
 - Industry
- Have already enter the European Market
- Very favorable climate conditions in Southern Countries
 - 30-50% Solar coverage
 - 100% (combined with biomass)

Advanced Combi market

The installation of "SOLLET" project at CRES

60m² Offices

Hot Water Storage Tank, 500l

Solar Thermal Collectors, 13.5m²

Biomass Boiler, 35kW

System's schematic diagram

European project SOLLET (2): Germany, Dormagen

Wood pellet oven

Solar collectors

- House for one family with 400m² heated living area
- 10 KW wood pellet oven with air/water heat exchanger
- 10 KW wood oven with air/water heat exchanger
- 105m² collector area
- 3000l water storage tank
- Gas heating back-up system

Wood oven

House

European project SOLLET (3): Germany, Cologne

House

- House for with 140m² heated living area
- 10KW wood pellet oven with air/water heat exchanger
- 28m² collector area
- 1000l water storage tank

Wood pellet oven

Solar collectors

Combi system France

Πηγή: IEA Task 26

Combi System: multi-apartment (AT)

Πηγή: GSWB

Combi System: Solar Village III (GR)

Commercial Systems

Καυστήρας Pellet

Commercial Systems: Plug n' play system

Commercial Systems: Plug n' play system

General Remarks - Comments

- The system can be combined with conventional heating devices integration in any existing heating system.
- They can be combined with solar chillers (Combi+) for the cooling load coverage (use of un-needed energy during summer).
- Cost: ≈400€/m²
- Required collector field: 20% of heated space for 40%-50% coverage (eg. 20m² flat plate collectors for 100m³ house)
- Special care must be taken on the system design and dimensioning (eg. the dimension of the expansion tank for stagnation).

Solar Cooling – Air conditioning

Chiller types, properties and examples

Solar Air Conditioning

System that use the solar energy for space heating, cooling and DHW preparation.

Use of chillers that use hot water as primary energy supply.

- Closed circuits for chilled water production
- Open circuits for conditioned air

Solar Cooling systems (2004)

- 67 systems
- Total installed cooling power 6 MW
- Collecting surface: 16700 m²

Source: IEA Task 25

Solar cooling technologies: basic characteristics

Method	Closed cycle		Open cycle		
Refrigerant cycle	Closed refrigerant cycle		Refrigerant (water) is in contact with the atmosphere		
Principle	Chilled water		Dehumidification of air and evaporative cooling		
Phase of sorbent	solid	liquid	solid	liquid	
Typical material pairs	water - silica gel	water - lithium bromide ammonia - water	water - silica gel, water - lithium chloride	water - calcium chloride, water - lithium chloride	
Market available technology	Adsorption chiller	Absorption chiller	Desiccant cooling	Close to market introduction	
Typical cooling capacity (kW cold)	50 – 430 kW	15 kW – 5 MW	20 kW – 350 kW (per module)		
Typical COP	0.5 – 0.7	0.6 – 0.75 (single effect)	0.5 - >1	> 1	
Driving temperature	60 – 90 °C	80 – 110 °C	45 – 95 °C	45 – 70 °C	
Solar collectors	Vacuum tubes, flat plate collectors	Vacuum tubes	Flat plate collectors, solar air collectors	Flat plate collectors, solar air collectors	

Solar cooling configurations

Absorption chillers

- 13 low power products available (<100 kW)</p>
- 3 chillers from Greek manufacturer
- The chilled water can be used for air conditioning (evaporation) or direct space cooling (fan-coils, chilled ceilings,...)
- Smaller chiller: 4.5 kW
- Supply water temperature: 75°C 100°C
- COP 0.68-0.78

Adsorption chillers

- The chilled water can be used for air conditioning (evaporation) or direct space cooling (fan-coils, chilled ceilings,...)
- Cooling power: 50 kW 400 kW
- Supply water temperature > 55°C
- COP 0.65

Desiccant Evaporative Cooling (DEC)

- Simple technology and low cost materials
- Parts available in the market
- About 6 desiccant wheel manufacturers worldwide
- Use of low water temperatures (down to 45°C)
- Chemical storage of energy and higher efficiencies (regeneration) with liquid desiccant (ClLi)
- Large space requirement

Source: Fraunhofer -ISE

DEC: operation

Hybrid systems

Cooling with solar energy and compression chiller

DEC with integrated compression chiller in Palermo – Italy (240 m²)

Low power solar chillers

SorTech AG

SK SonnenKlima GmbH

Solid DEC cooling system

Source: Fraunhofer -ISE

House with absorption chiller (4.5-10kW)

Source: Rotartica

Offices of Fraunhofer ISE – Liquid DEC

Source: Fraunhofer -ISE

"Photonio Project" - Oinofita Attiki - Largest Installation

Sarantis cosmetic factory

Collector field:2664m²

2 adsorption chillers700kWc

Total cost: 1.409.000 €

General observations

- ✓ Seasonal coincidence of high cooling needs and high solar energy
- X Industry of small scale chillers is under development
- ★ High cost for chillers up to 30kW (2000€/kW)
- ✓ Integration to existing systems. (use of Fan coils etc.)
- **X** Many companies hesitate to export their products
- ✓ Solar chillers in "split unit" form are expected soon
- Cooling tower is required in most cases
- ✓ Can use geothermal borehole heat exchangers to reject energy instead of cooling tower

General collecting field dimensioning:

- 3m²/kWc for closed circuit systems
- 10m² per 1000m³/h for open circuit chillers

High-Combi

 High fraction solar cooling and heating system with bi-seasonal storage

European project High-Combi

High Solar fraction heating and cooling systems (High-Combi, STREP FP6)

Thank you for your attention

