

CST Technology	Parabolic Trough	Linear Fresnel	Solar Tower	Parabolic Dish
Focus	Linear	Linear	Point	Point
Tracking	1 axis	1 axis	2 axis	2 axis
Mirrors shape	Curved	Flat, curved	Flat	Curved
Receiver	Moving pipe	Fixed pipe(s)	Fixed external	Circular area of
	with/without	with/without	surface	the stirling
	vacuum	vacuum		engine
Working fluid	Thermal oil, mo	olten salt, pressurized	l water, 2 phase	Hydrogen, helium
		water		
Minim um s ystem	150 m ²	150 m ²	1,000m ²	100 m ²
collector surface				
Steam / industrial use	4	~	×	×
Solar cooling	✓	✓	×	×
Desalination	✓	✓	✓	×
Power plant	✓	✓	✓	✓
Power cycle	Rankine	Rankine	Rankine	Stirling
Storage (thermal)	✓	✓	✓	×
Grid stability	✓	✓	✓	×
Hybridization	✓	✓	✓	1

Market perspectives

Electricity sector

Law 3851/2010 RES ≻ ۶

- Directive 2009/28/EC targets by 2020 > 40% RES for electricity production > 20% RES gross energy consumption for heating / cooling > 10% RES in transport sector
- ۶ The system's marginal price is rather low compared to the levelized CST generation cost

Favorable FiTs	for wind an	nd PVs (~2.10	DMW wir	nd and 2	2.900 P\	/s alrea	dy insta	lled)			
NOT favorable	FiTs for CSF	Ps (285	-265€	/MWh),	based o	on:						
				, ,,		_						
CSP		CAPE	x lo	OPEX	CF							
NO Storage				2,0%	20,0%							
WITH Storag	WITH Storage		2	2,0%	30,0%							
A potentia Technology	lly feasible	e scena	ario:			C	SP					
-	-						-			Storage	>7h /24h	
-	-	Storage C)-3h/24h	1		Storage 3	3-7h /24h	1			≥7h /24h	1
-	-			≥50MW	≤2MW		-	≥50MW	≤2MW	Storage 2-20 MW	≥7h /24h 20-50 MW	≥50M
-	≤2MW	Storage C 2-20)-3h/24h 20-50	1	≤2MW 7800	Storage 3	3-7h /24h 20-50	≥50MW 4800	≤2MW 9100	2-20	20-50	
Technology	≤2MW	Storage 0 2-20 MW	0-3h/24h 20-50 MW	≥50MW		Storage 3 2-20 MW	3-7h /24h 20-50 MW			2-20 MW	20-50 MW	≥50M 6000 2,5%

Market perspectives

Industrial sector

- Food industry (dairy products, cold cut and process meat factories, pastry and cake confectioneries, olive oil refineries, tinned goods, slaughterhouses). •
- Agro-industries (solar drying, horticulture-nursery greenhouses, slaughterhouses, meat processing, livestock landings).
- Textiles (tanneries, leather treatment, cloth, refineries, textile treatment workshops).
- Chemical industry (cosmetics, detergents, pharmaceuticals, wax, distilleries, breweries). . .
- Beverage industry (wineries, liquor and wine distilleries, breweries, soft drinks).

Industrial Sector	Process	Temperature Level [°C]
Food and Beverages	Drying Washing Pasteurizing Boiling Sterilizing Heat Treatment	30 - 90 40 - 80 80 - 110 95 - 105 140 - 150 40 - 60
Textile Industry	Washing Bleaching Dyeing	4080 60 100 100 160
Chemical Industry	Boiling Distilling Various chem. Processes	95 – 105 110 – 300 120 - 180
All Sectors	Pre-heating of Boiler Feed- water Heating of Factory Buildings	30 - 100 30 - 80

Conclusions	
 Greece constitutes an extraordinary option for CST technology impler conditions Industry, solar air-conditioning, desalination and power generation are Essential requirements for feasible CPS plats are the climate condition location, the availability and cost of land, the availability of water and projects. Effective supporting mechanisms are required, either by means of Fin to ensure the financial viability of the project. An effective legal and regulatory framework is needed, which will s take-off stage, in a way similar to that of wind- or PV-technology. CST are investments that call for a multifaceted decision-making proceabilal intensive. 	e possible applications. Ins, especially the DNI of the the social acceptance of the Fs or by initial cost subsidies, support this technology in its
	tweet you! drosou@cres.gr