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AEROSOL & PARTICLE TECHNOLOGY t

Quick introduction -

“» APTL - Aerosol & Particle Technology Laboratory
*  Established in 1996, located in Thessaloniki, Northern Greece
*  Research in the science and technology of fine particles and their suspensions in various media

*  Accomplishments include: 2014 Taipei Expo Award, 2010 European Council Advanced Grant,
2006 Descartes Prize, 2006 IPHE Technical Achievement Award for solar hydrogen research and
others

+“» CPERI - Chemical Process & Energy Resources Institute

* Sustainable & Clean Energy, Environmental Technologies, Chemical and Biochemical Processes,
Advanced Functional Materials

+“» CERTH - Centre for Research and Technology Hellas
* One of the leading Greek Research Centres and the largest in energy science and technology
* Private non profit body governed by public law

* >500 scientific, technological and administrative personnel ’6 *5:9
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Exploit Solar Energy

=

Solar to Power

Solar Energy

Concentrating
Solar-Thermal
Technologies

Thermal storage

o Solar Chemistry

A Stairway to Energy Heaven .=
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Solar Energy -> Solar Chemistry -> Solar Fuels .=

Solar H, and CO
Solar Energy to
“Solar Fuels”

Thermochemical:
Metal oxide redox cycles

Two-step thermochemical cycles .=
Step 1: Regeneration (reduction step, high temperature)
MO - MO, + % 0,
Step 2: H,0 and CO, splitting (oxidation step, lower temperature)
MO_, +H,0— MO, +H,
MO, +CO, - MO, +CO

MO, : Metal oxide, typically
mixed/doped with transition
and/or rare earth metals

Keyword:
& Redox Materials
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Carbon Neutral Solar Fuels from CO, and H,0 .=

DL,
co, HO/

Solar Synthesis Gas

H, + CO —-C,H, (Liquid Fuels/Fischer-Tropsch process)

4H, + CO, —CH, + 2H,0 (Gas fuels, methane/Sabatier process)

H, + CO — C,H, (Plastics)

Sustainable Storage of Carbon AND Hydrogen!

Redox materials |
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Substituted ferrites: NiFe,0,
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Redox materials Il
Doped Ceria: Ce, ¢Zr, ,0,
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Oxygen vacancy formatian energy (eViLu )

Development path |

Material Design

Computational Chemistry
(DFT, thermodynamics)

iz

24 atom ol

Material Synthesis & Characterization

=

Solid Phase

Precursor Q
| Materials |

Liquid Phase
{Metal/Oxide powders) [5olutions of metal salts)
|
i ) b | ‘ .
Sintering of pawders ‘Combustion of Combustion of Pyralysis of
: powders Gels Droplets
o0 035 %0 ors 10
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Solid or Liquid
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Powder to pellet, monolith & foam

Phase techniques
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Development path Il
Material Evaluation Lab scale reactor testing

High power solar simulator & reactor

Pilot scale reactor testing
(under construction)

E

Kinetic & thermal modelling 50kW,, solar furnace (projected finish date mid July 16)

The Hydrosol-Plant Project .=

Thermochemical Hydrogen productionin a solar monolithic reactor:

construction and operation of a 750 kWth plant
Partners

e APTL/CERTH - (Coordinator RES)
e DLR - (RES)
CIEMAT - (RES)
HYGEAR - (SME)
HELPE - (INDUSTRY)

Demonstration of the technology at a larger,
closer-to-industrial level

x10¢m x102m x1m x10 m
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Solar Fuels Technology Evolution .=

HYDROSOL-I HYDROSOL-II HYDROSOL-3D HYDROSOL-PLANT

750 kW plant
A

3 kW x 2, continuous H, production

100 kW X 2, pilot plant
1 MW‘pAIant design

1 MW installation

|
2004 2005 2008 2011 2015 2017
JAPAN EXPO IPHE Descartes Prize ERC IDEAS Award Taipei H2020
2007 2010 Inv. Tech. 2014 Success Story 2016

European Researc C

Advanced
Grant

The difficult questions .=

Cost

* Levelized Cost of 14€/kg H, (LHV:120MJ/kg), ?€/kg CO

*  Verydifficult to answer at this stage: depends on location and plant size
among a myriad other factors

* Techno-economic studies exist

* Hard data are missing, no pilot plant case yet (Hydrosol-Plant)

Efficiency
__ AHf of H,0
Nsolar to fuel = Q—m

* Theoretical efficiencies of conversion of solar energy to fuel are up to 70%
* Reported experimental efficiencies so far are much lower

Why pursuit it?

* Very promising pathway for a sustainable energy future
* The technology is still far from mature
* It works!
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Challenges
Materials

* Investigate more material families (ferrites, doped ceria, perovskites)

* Increase the yield (g of H, or CO / g of redox material)

* Lower the temperatures

* Material cyclability

* Material stability

* Material deactivation

* There isn’t a material that is perfect for both H,0 and CO, splitting, and
easily reduced (lower T) and stable under high temperatures

*  We are looking to create one with good enough performance over all levels
- doping

Reactors

*  Extreme temperatures are a big challenge for gas seals, vacuum

* Indirect vs. direct irradiation (windowed vs. tubular reactors)

* Good thermal distribution to avoid hotspots

* Cavity reactors are a good choice

Infrastructure

* Not dedicated/optimized for solar fuels
* Missing at the larger scale (high power solar towers)

=

Carbon Neutral Solar Fuel Plant

Green Energy, Transport and Industrial Processes

—_— Electric Energy

—— CH,, CH,
Fuels & Chemicals

Desalination H,0
HYDROSOL plant

European Research Gouncil

Advanced Grant

=
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Vision: Sustainable Mobility and Clean Energy.=

13

Solar Fuel Reactor
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Thank you for
your attention!

AEROSOL & PARTICLE TECKNOLOGY t L

dimitrakis@cperi.certh.gr
URL: apt.cperi.certh.gr

EU SOLARIS

The European Research Infrastructure
for Concentrated Solar Power

31/5/2016



