Big<EAST
Mobilisation Campaign Athens
20 October 2009

Biogas in Denmark - Present and future

Teodorita Al Seadi, MSc
Research coordinator, Principal scientist

University of Southern Denmark
Institute of Chemical Engineering, Biotechnology and Environmental Technology
Niels Bohrs Alle 1; 5230 Odense M
Denmark
Summary

Introduction: High priority to climate change policies
  • Increased political interest in biogas

The present: Denmark is a “biogas country”
  • Biogas state of the art anno 2009
  • Current technologies and concepts
  • Existing framework and economy
  • Incentives and barriers

The future: Denmark as fossil free economy
  • “Green Growth” and the role of biogas
  • Incentives and challenges ahead

Conclusions
Climate change
  • Reduction of GHG emission from agriculture

Security of energy supply
  • The oil and gas reserves from North Sea will be exhausted within the next 10 years

Green energy
  • New business opportunities

=> Increasing political interest in biogas
Increasing political interest in biogas

February 2008: The Government Energy Agreement
• Significant improvement of economic frames for biogas production

December 2008: Agriculture and Food Ministry report
”Agriculture and climate”
• Highlights the impact of agriculture on climate change
• Potential of 20 PJ biogas energy from vegetable biomass

June 2009: The Government signs the “Green Growth" agreement
• “A green growth vision for nature, environment, climate and agriculture”
=> by 2020 at least 50 % of animal slurry must be processed, mainly through AD in biogas plants
Why is organic waste necessary?

<table>
<thead>
<tr>
<th>Why is organic waste necessary?</th>
<th>1 t liquid manure, 5% DM</th>
<th>=&gt; 20 m3 biogas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 t organic waste</td>
<td>=&gt; up to 1000 m3, biogas, depending on quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>=&gt; extra income from treatment fees</td>
<td></td>
</tr>
</tbody>
</table>

**Biogas production, plants types and ranges of capacity**

Overall biogas production in Denmark = 4 PJ/year (incl. biogas from WWT, landfill and industrial biogas)

of which biogas from agricultural plants = 2 PJ/year

- 20 joint biogas plants; 50-600 m3 biomass/day
- 60 farm scale biogas plants; 5-100 m3 biomass/day

- Technically well operating
- Economically viable
- Co-digestion of organic wastes mandatory (up to 25% of feedstock)

**Feedstock types and amounts**

- Animal manure and slurries: 1.3 mil t/year
- Organic wastes: 0.3 mil t/year
Thorsø joint biogas plant

Source: Tafdrup 2009

Orø farm-scale biogas plant
## Advantage of scale

**Economic break even** related to share of organic wastes and biogas yield

<table>
<thead>
<tr>
<th>Per day treatment capacity, m³ biomass/day</th>
<th>300 m³/day</th>
<th>550 m³/day</th>
<th>800 m³/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break even level of waste admixture</td>
<td>21 %</td>
<td>13 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m³ biogas/ m³ biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Break even biogas yield</td>
</tr>
</tbody>
</table>

**Calculation preconditions:**

- **Gas yield from manure**
  - 22 m³ biogas/m³
- **Gas yield from waste**
  - 75 m³ biogas/m³
- **Gate fee (receipt of waste)**
  - 50 DKK/m³ waste
- **Biogas sales price**
  - 2 DKK/m³ biogas

*Source: Gregersen 2009*
• Animal slurry is transported to/from the biogas plant by vacuum tankers (30-35 m³)
• Diesel consumption for slurry transport - equivalent to 5% of gas production
• Average distance for slurry transport: 10 km (joint plants)
A typical joint biogas plant
Source: Tafdrup 2009

Animal manure
- Cattle
- Pigs
- Poultry

Organic Wastes
- Industry
- Sewage works
- Households

Centralised Biogas Plant
- Digestion
- Smell reduction
- Pathogen elimination
- Nutritional declaration (NPK)

Liquid fertilizer for agricultural crops
- Improved nutrients utilization
- Less chemical fertilizer
- Consumption
- Less water pollution

Biogas for electricity and heat production
- Renewable energy
- No greenhouse gas emission
- Less air pollution
- Efficient fuel utilization
FANGEL JOINT BIOGAS PLANT – PRINCIPLE DIAGRAM

Source: BIGADAN®
Environmental benefits

- Reduced emission of GHG gases (CO₂, methane and NO₂)
- Improved fertiliser value and less water pollution due better nutrient utilisation (only combined with good agricultural practices)
- Sanitation
- Reduction of bad smell
- Controlled recycling of organic wastes

**Estimated environmental benefits in Denmark;** [Source: Gregersen 2009]
- Reduced GHG emission: 90 kg CO₂ eq. per t digested biomass
- Reduced Nitrogen leaching to fresh water systems: 0,11 kg N per t digested biomass
Monetised biogas externalities

Case study: 550 t biomass/day, with co-digestion of 20% organic waste

Source: RISOE

<table>
<thead>
<tr>
<th>Monetised externalities:</th>
<th>Results based on biogas plant:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-economic value per ton biomass</td>
<td>Biogas plant size: 550ton/day (20% waste)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td></td>
</tr>
<tr>
<td>Storage, handling and distribution of liquid manure:</td>
<td>Monetised</td>
</tr>
<tr>
<td>Storage savings for liquid manure</td>
<td>0.13 EUR/ton liquid manure</td>
</tr>
<tr>
<td>Transport savings in agriculture</td>
<td>0.07 EUR/ton liquid manure</td>
</tr>
<tr>
<td>Value of improved manurial value (NPK)</td>
<td>0.73 EUR/ton degassed</td>
</tr>
<tr>
<td>Value of reduced obnoxious smells</td>
<td>0.67 EUR/ton liquid manure</td>
</tr>
<tr>
<td>Industry</td>
<td>Savings related to organic waste treatment</td>
</tr>
<tr>
<td>Environment</td>
<td>Value of GHG reduction (CO₂, CH₄, N₂O-reduction)</td>
</tr>
<tr>
<td>Value of reduced N-eutrophication of ground water:</td>
<td></td>
</tr>
<tr>
<td>Liquid manure</td>
<td>0.39 EUR/ton degassed</td>
</tr>
<tr>
<td>Org. waste spread on farm land in reference case</td>
<td>0.37 EUR/ton liquid manure</td>
</tr>
<tr>
<td>Org. waste not spread on farm land in reference case</td>
<td>1.64 EUR/ton org. waste</td>
</tr>
<tr>
<td></td>
<td>Org. waste not spread on farm land in reference case</td>
</tr>
</tbody>
</table>
Existing framework / incentives

- Price guaranty of 10 euro cents/kwh for electricity from biogas
- Heat production by CHP attractive due increasing energy prices
- Increasingly restrictive regulation concerning handling and application of manure
- Animal farmers interested to separate slurry and supply concentrated fractions to biogas plants
FUTURE: Denmark as fossil free economy

What is “Green growth”

"We would make Denmark a centre for green growth. This requires a new industrial revolution, where we will develop a new economy, based environmental friendly, new technology"  

(Declaration of the Danish prime minister at the official opening of the parliament, 7 October 2008)

• 19 June 2009: the Danish Government adopted the ”Green growth” document, a vision of ”green development” for nature, environment, climate and agriculture

• Funding: 1.8 bill. Euro up to 2015
Green growth
Agriculture as green energy provider

• 50 % of the produced animal slurry to be processed for green energy production (most of it through AD) by 2020

• Status in 2012 + further measures to increase the utilisation of manure for energy production.
Green growth
How much biogas? When?

• 4 PJ biogas; 0.5% of brute energy consumption in Denmark

• 20 PJ by 2020, if 50% of animal manure and slurries will be processed by AD

• 40 PJ currently estimated biogas potential in Denmark (hereof 26 PJ from manure)

• 20 PJ extra after 2020, from maize and grass cuttings (Agriculture and Food Ministry 2008: “Agriculture and climate” report)

• On long term: Aquatic biomass (“sea salad” and other sea algae)
Incentives, subsidies and legislation

Subsidies 2010-2012

• Further development of biogas with up to 20 % subsidies
  • Joint biogas plants => 85 bill. DKK per year
  • Organic biogas plants => 15 bill. DKK per year

• Subsidies for cultivation of multi annual energy crops
• Equal subsidies for utilisation of biogas for CHP (district heating) or through the natural gas grid

Incentives and legislation

• Adjustment of the planning legislation => Municipalities must include biogas sites in their planning
• Concrete strategy of effective integration of biogas in the national energy supply
• Coordination plan for biogas development and nutrient redistribution (high density areas)
• Assistance to municipalities regarding location of new biogas plants
• Adjustment of heat supply legislation, aiming equal priorities for both the biogas and the natural gas suppliers
Processing 50 % animal manure for energy production
A highly difficult task

Possible technologies: biogas, incineration, gasification

**Biogas**
- Dominant technology (> 80%) - Danish Energy Authority

**Incineration and/or gasification**
- Applied only when suitable (technically and economically)
- Only for processing the fibre fraction separated after AD
Biogas must replace natural gas

Estimated advantages:

Short to medium term
- Greatest contribution to security of supply
- Highest socio-economic benefits
- Best sale price for biogas
- Uses the existing infrastructure and CHP units

Long term
- Upgrading / grid injection
- Possibly cheaper alternative: mixed gases (downgraded natural gas and biogas)

Very long term
- Utilisation as transport fuel
New break through for biogas

- Increasing the amount of treated manure from today's 5% to 50% until 2020 - very big task!!

- Implies achievement of economic break through for biogas plants processing almost exclusively manure and slurries

- If succeeded, it will open the way for utilisation of the main part (> 80 pct.) of produced manure and slurries, after 2020

- It will have international significance for biogas development
Planning actors

Danish Biogas Association
Biogas Business Association
Ministry of Agriculture
Municipalities
Counties
Danish Heat Supply Company
Natural Gas Companies
Energinet.dk
Other ministries and authorities

- Many municipalities wish to be among the first planning the expansion of biogas
- The counties are committed to give biogas high priority
Key premises for success:
Optimisation of costs and use of proven technologies

- Sustainable economy for plants operating on slurry alone
- Location of new plants identified and approved
- Shorter time for getting the permit
- Effective integration of biogas in the overall energy supply
- Geographical coordination of biogas development with the increased need of manure and nutrients redistribution
Conclusion
The premises for the second and decisive break through for biogas in Denmark must be created now

• The first break through for biogas was achieved since 1990 up to now: operational stability, acceptable corporate economy, significant environmental and agricultural benefits. Limited by availability of organic waste

• The second and decisive break through will occur when the new plants, based on slurry, manure (with some co-digestion of energy crops) will be economic sustainable

• The next 3-5 years will show if this can be achieved and if the ambitious objectives of "Green Growth" concerning biogas can be reached
ACNOWLEDGMENT

Thanks to
Danish Biogas Association www.biogasbranchen.dk
and to Danish Energy Authority
www.ens.dk/
for providing information for this presentation

Thank you
for your attention!