

Biomass logistics – supply chains for heat generation

Training material for B4B seminars Prepared by: Danish Technological Institute 2016

Overview

-

- Solid biofuels
 - Feedstock
 - Wood
 - Agricultural residues
 - Energy crops
 - Biomass Logistics and supply chains (harvesting, handling and storage)
 - Woody biomass
 - Agricultural biomass
 - Security of supply
 - Safety aspects
 - Quality control and standardization
 - Modelling of biomass supply chains
 - Best practice examples

Overview

- Solid biofuels

-

- Feedstock
 - Wood
 - Agricultural residues
 - Energy crops
- Biomass Logistics and supply chains (harvesting, handling and storage)
 - Woody biomass
 - Agricultural biomass
 - Security of supply
 - Safety aspects
 - Quality control and standardization
 - Modelling of biomass supply chains
- Best practice examples

Solid biofuels

- Different types of biomass
 - Wood based
 - Agricultural residues
 - Energy crops
- Different shapes
 - Pellets
 - Briquettes
 - Chips
 - Bales
 - Loose
 - Powdered

Wood based biofuels

- Woody biomass
 - Forest / plantation wood
 - Whole trees
 - Stemwood
 - Logging residues
 - Stumps / roots
 - Bark
 - By products from wood processing industry
 - Saw dust / shavings
 - Treated and untreated
 - Used wood
 - Building / construction material / furniture etc...

Forest map of Europe

- Highest forest density in North-East
- But forest grow much slower in the North than in South of Europe
- Forest density is not the same as availability
- Many different applications for wood
 - Construction material
 - Furniture
 - Pulp & paper
 - Energy

Forest map of Europe - Source: European Forest Institute, 2011

Biggest potentials of available wood for energy production in:

- Germany
- France
- Finland
- Sweden
- Poland

Outside EU

- Russia
- Canada
- US

Wood potential in Europe

Total wood Potential is a sum of available:

- Stem wood
- Primary forest residues
- By products
- Used wood

Wood potential in Europe. Technical potential in 1000m³ Source: VTT, Finland

	1,000 m ³							
Country	Stem wood	Primary forest residues	By-products from forest industries	Used wood	Total			
Austria	8 104	5 735	5 525	1 100	20 464			
Belgium	668	1 012	1 638	2 100	5 418			
Bulgaria	4 262	4 072	785	100	9 219			
Cyprus	19	9	2	100	130			
Czech Republic	1 272	4 351	3 445	700	9 768			
Denmark	2 407	1 038	295	1 300	5 040			
Estonia	3 538	2 140	908	200	6 786			
Finland	19 320	23 434	14 207	1 200	58 161			
France	40 311	21 050	6 725	6 300	74 386			
Germany	27 749	25 903	12 942	8 700	75 294			
Greece	2 012	1 076	280	900	4 268			
Hungary	5 908	2 407	505	500	9 320			
Ireland	34	883	607	600	2 124			
Italy	23 833	5 982	1 712	6 200	37 727			
Latvia	2 106	3 409	1 987	300	7 802			
Lithuania	2 117	1 971	886	300	5 274			
Luxembourg	213	124	121	0	458			
Malta	0	0	0	0	0			
Netherlands	704	419	156	2 500	3 779			
Poland	13 394	14 477	7 912	3 500	39 283			
Portugal	577	2 810	2 334	700	6 421			
Romania	11 683	6 658	2 650	1 700	22 691			
Slovakia	608	2 850	1 728	200	5 386			
Slovenia	2 699	1 370	459	100	4 628			
Spain	6 763	7 222	3 995	4 200	22 180			
Sweden	10 089	21 506	18 382	1 000	50 977			
United Kingdom	5 264	4 528	1 984	7 500	19 276			
EU-27	195 656	166 438	92 164	52 000	506 258			

m³ is solid cubic meter.

Most common feedstock for heating applications:

Raw material	Average Water content	Origin	Used for:
Saw mill residues	15 – 50%	Regional saw mills	Premium wood chip production, pellets
Round wood	20 – 50%	Forest, regional saw mills	Premium wood chip production
Forest residues	45 – 55%	Private and municipal and federal forests	Industrial wood chips, and maybe premium wood chips
Landscaping material	45 – 60%	Private and municipal landscaping companies	Industrial wood chips
Short rotation coppices	45 – 55%	Short rotation coppices	Industrial wood chips, and premium wood chips
Stalk material	15 – 20%	Agricultural byproducts _{Sour}	Straw fired plant ce: B4B project 2nd brochure

Biofuels based on agricultural residues

- Agricultural residues
 - Cereal crops and grasses
 - Whole plant
 - Straw part
 - Seeds
 - Shells
 - Stones / kernels
 - For heat and power production straw is the most important agricultural feedstock

Danish Technological Institute

Straw as a bioenergy feedstock

Available straw potential in Europe in 1,000 tons. Monforti et al. (2013)

Querra tana	Available potential		
Country	PJ/a		
Austria	6.4		
Belgium	5.2		
Bulgaria	12.1		
Cyprus	0		
Czech Republic	15.8		
Denmark	19.3		
Estonia	1.8		
Finland	8.9		
France	111.5		
Germany	92.9		
Greece	8.7		
Hungary	15.7		
Ireland	5.1		
Italy	40.3		
Latvia	3.5		
Lithuania 6.6			
Luxemburg 0.4			
Malta	0		
Netherlands	3.6		
Poland	39		
Portugal	1.5		
Romania	18.7		
Slovakia	6		
Slovenia	0.5		
Spain	74.4		
Sweden	10.5		
United Kingdom	52		
EU-27 TOTAL	560.4		

Technical potential of straw residues in Europe (Böttcher et al. 2010)

Energy crops as a feedstock

- Plants grown for energy production
 - Reed canary grass
 - Miscanthus
 - Woody energy crops
 - Poplar
 - Short rotation coppice

Solid biofuels

- Biomass is often converted into an energy carrier of defined size and shape to ease trade and handling of biofuels
 - Pellet
 - Briquettes
 - Chips
 - Logs
 - Bales

Pelletization of biomass

- Conversion of a low density bulk material into pellets
 - Increase of density (straw: 40 kg/m³)
 → 750 kg/m³)
 - Decrease of transportation, storage, handling costs
 - Standardized size → International standards
 - more homogeneous material → process automatization

Briquetting of biomass

- Alternative process to compact biomass into a solid energy carrier
- Robust and easy to implement process
- Increase the density / lower the volume of the biomass for cheaper transportation and storage of biomass
- Used for all types of biomass: wood, straw, husks, peels

Danish Technological Institute

Overview

- Solid biofuels
 - Feedstock
 - Wood
 - Agricultural residues
 - Energy crops
- Biomass Logistics and supply chains (harvesting, handling and storage)
 - Woody biomass
 - Agricultural biomass
 - Security of supply
 - Safety aspects
 - Quality control and standardization
 - Modelling of biomass supply chains
 - Best practice examples

Biomass logistics and supply chains

- Biomass logistics and biomass supply chains are important for
 - Stable supply of biomass fuels around the year
 - Predictable price
 - Stable quality
 - Trade and contracting
 - Planning and maintance of the heating system

Biomass demand of bioenergy systems

Typical scale of operation for various sizes and types of bioenergy plants

Type of plant	Heat _(th) or power _(e) capacity ranges, and annual hours of operation.	Biomass fuel required (oven dry tonnes/year)	Vehicle movements for biomass delivery to the plant	Land area required to produce the biomass (% of total within a given radius).
Small heat	100 - 250 kW _{th} 2 000 hr	40 - 60	3 - 5 / yr	1 - 3% within 1 km radius
Large heat	250kW _{th} - 1 MW _{th} 3 000 hr	100 - 1200	10 - 140 / yr	5 - 10% within 2 km radius
Small CHP	500 kW - 2 MW - 4 000 hr	1 000 - 5 000	150 - 500 / yr	1 - 3% within 5 km radius
Medium CHP	5 - 10 MW 5 000 hr	30 000 - 60 000	5 - 10 / day	5 - 10% within 10 km radius
Large power plant	20 - 30 MW _e 7 000 hr	90 000 - 150 000	25 - 50 / day and night	2 - 5% within 50 km radius

Source: International Energy Agency – Best practice guideline: Bioenergy Project Development Biomass Supply

Solid biomass fuels supply chain options according to end-user sector

End-user and average annual fuel consumption	Blomass fuel	Quality requirements	Technology for energy conversion
Households (<50 kWh)	Wood pellets	Good mechanical durability Low ash content	Pellet boilers Pellet stoves
Annual fuel consumption <30 MWh	Wood briquettes Wood chips Log wood	Low ash content, packaged Low moisture content, < 35w-% Low moisture content, 15-20 w-%	Stoves and fireplaces Stoker boiler Stoves and fireplaces, boilers
Farms, large buildings (<1 MWh)	Wood chips from whole trees	Low moisture content, 13-20 w-%	Stoker burners
Annual fuel consumption < 3 GWh)	or delimbed trees Straw bales	High quality bales, low moisture content (< 18 w-%)	Grate firing Grate combustion, also whole bales
	Wood pellets	Good mechanical durability Low ash content	Pellet boilers Stoker boilers
District heating plants (<5 MW _{th} or power plants (<5 MW _e)	Wood chips from forest residues or whole trees	Moisture content usually less than 40 w-%	Grate combustion Fluidised bed combustion Gasification
Annual fuel consumption <35 GWh (DH, CHP) or 85 GWh (power only)	Straw or energy grass bales	Moisture content, less 20 w-%	Cigar combustion Crate combustion, also whole bales
CHP and power plants (>5 MW _e) Annual fuel consumption from	Wood fuels from forest residues, stumps	Boiler and handling equipment based requirements	Usually cofiring with coal or peat Fluidised bed combustion Gasification
85 GWh to several TWh	Wood or straw pellets	Boiler and handling equipment based requirements	Cofiring with coal Pulverised combustion
	Herbaceous biomass (straw or energy grasses, like miscanthus and reed canary grass)	Big bales, moisture content less than 20 w-%	Cigar combustion Grate combustion Fluidised bed combustion Cofiring with coal
	Olive residues	Boiler and handling equipment based requirements	Grate firing Cofiring with coal in fluidised bed boiler

Source: E. Alakangas, VTT, Finland - EUBIONET II project

Biomass supply chains

- Biomass supply chains
 - Cultivation
 - Harvesting
 - Drying
 - Pre-treatment
 - Loading and un-loading operations
 - Transport
 - Short distance
 - Long distance
 - Storage
 - Intermediate
 - Longterm

Biomass supply chains

Typical steps in a biomass supply chain

Energy carrier logistics

Biomass supply chains

Logistic chains can look very different, and vary greatly in their costs

Source: International Energy Agency – Best practice guideline: Bioenergy Project Development Biomass Supply

Cost factors of biomass supply chains by country

Index for		Labour costs				Fuel costs		Vehicle investment costs	
Country Code		Gross hourly wage (EUR/h)	Social security contribution ratio (% of gross hourly wage)	Total hourly wage (EUR/h)	Labor costs index	Diesel fuel gross price (EUR/I)	Fuel cost index	Index by sales expert (100 = Mean in Europe)	Investment cost index
BE	Belgium	39.3	47%	57.8	1.44	1.42	1.00	103	1.00
SE	Sweden	39.1	52%	59.4	1.49	1.67	1.19	108	1.05
DK	Denmark	38.9	15%	44.7	1.12	1.48	1.05	106	1.03
FR	France	34.2	50%	51.3	1.28	1.37	0.97	97	0.94
LU	Luxembourg	33.7	15%	38.8	0.97	1.26	0.89	103	1.00
NL	Netherlands	31.1	30%	40.4	1.01	1.47	1.04	106	1.03
DE	Germany	30.1	28%	38.5	0.96	1.50	1.07	99	0.96
FI	Finland	29.7	28%	38.0	0.95	1.55	1.10	108	1.05
AT	Austria	29.2	37%	40.0	1.00	1.41	1.00	103	1.00
IE	Irland	27.4	18%	32.3	0.81	1.58	1.12	105	1.02
IT	Italy	26.7	41%	37.6	0.94	1.71	1.21	107	1.04
ES	Spain	20.6	37%	28.2	0.71	1.36	0.96	89	0.86
UK	Great Britain	20.1	16%	23.3	0.58	1.73	1.23	100	0.97
CY	Cyprus	16.5	21%	20.0	0.50	1.34	0.95	86	0.83
GR	Greece	16.4	29%	21.2	0.53	1.44	1.02	89	0.86
SI	Slovenia	14.4	17%	16.8	0.42	1.40	0.99	105	1.02
РТ	Portugal	12.1	26%	15.2	0.38	1.45	1.03	105	1.02
MT	Malta	11.9	10%	13.1	0.33	1.40	0.99	89	0.86
CZ	Czech Rep.	10.5	37%	14.4	0.36	1.43	1.01	109	1.06
SK	Slovakia	8.4	36%	11.4	0.29	1.44	1.02	109	1.06
EE	Estonia	8.1	37%	11.1	0.28	1.40	0.99	91	0.88
HU	Hungary	7.6	34%	10.2	0.25	1.52	1.08	109	1.06
PL	Poland	7.1	20%	8.5	0.21	1.36	0.96	91	0.88
LV	Latvia	5.9	27%	7.5	0.19	1.38	0.98	91	0.88
LT	Lithuania	5.5	40%	7.7	0.19	1.32	0.94	91	0.88
RO	Romania	4.5	31%	5.9	0.15	1.33	0.94	109	1.06
BG	Bulgaria	3.5	19%	4.2	0.10	1.31	0.93	109	1.06
СН	Switzerland	41.9	20%	50.3	1.26	1.62	1.15	109	1.06

Rotter and Rohrhofer (2013)

Wood fuel supply chain

Wood fuel supply chain

Example: thinning in coniferous stand:

- Felling
- Full tree skidding
- Mechanized processing at the landing site
- Loading logs on truck and trailer
- Transporting logs to biomass trade center (90 km)
- Unloading logs from truck and trailer
- Natural seasoning
- Chipping logs
- Delivery of chips (90 km one way)

Wood fuel supply chain

Working phase	Equipment	Productivity (bulk m³/h)	Cost (€/bulk m³)
Felling	2 chainsaws	35	0.5
Full tree skidding	2 tractors and winch	17	5.9
Mechanized processing at the landing site	processor on tractor	24.3	1.4
Loading logs on the truck and trailer	truck and trailer	121.5	0.6
Transporting logs to the biomass trade centre (back&forth 90 km)	truck and trailer	36.5	2
Unloading logs from the truck and trailer	truck and trailer	145.8	0.5
Natural seasoning	—	—	0.3
Chipping logs	high power chipper	100	1.4
Delivery of chips (back&forth 90 km)	truck and trailer	24.4**	2.0
TOTAL			14.6

Aebiom, 2009

Chainsaw

purchase cost: 500-900 € productivity in high forest: 1-1.2 solid m³/h (thinning) 2-2.5 solid m³/h (main felling) productivity in coppice: 0.4-0.7 stacked m³/h (average cond.) 0.8-1.8 stacked m³/h (good cond.) fuel consumption per hour: 0.6-1 l (petrol and oil mixture) hourly cost: ≈ 18-20 €

Tractor and winch

tractor purchase cost: 45,000-60,000 € winch purchase cost: 3000-4200 € productivity in high forest: 2.5-6 solid m³/h productivity in coppice: 3-7 stacked m³/h fuel consumption per hour: 4-9 I hourly cost: ≈ 45-50 € (2 operators)

Tractor and trailer

tractor purchase cost: 45,000-60,000 € trailer purchase cost: 8,000-25,000 € loading capacity: 5-15 t productivity: 5-12 solid m³/h (depending on hauling distance) fuel consumption per hour: 5-10 l hourly cost: ≈ 40-50 €

Woodfuels Handbook, Aebiom, 2009

Cable crane with mobile tower yarder *light*

purchase cost: 40000-120,000 € max traction power: 2,000 daN productivity: 3-6 solid m³/h fuel hourly consumption: 5-6 l hourly cost: ≈ 25-40 € medium

purchase cost: 100,000-220,000 € max traction power: 5000 daN productivity: 3-12 solid m³/h fuel consumption per hour: 6-10 l hourly cost: ≈ 40-80 €

Harvester

purchase cost: 300,000-370,000 € max cutting diameter: 65-70 cm max delimbing diameter: 45-60 cm max negotiable slope: 35% (wheels) 60% (tracks) (with optimal soil bearing capacity) productivity in high forest: 8-20 solid m³/h fuel consumption per hour: 11-16 l hourly cost: ≈ 90-120 €

Forwarder

purchase cost: $180,000 - 270,000 \in$ loading capacity: 10 - 14 tmax negotiable slope: 30 - 35%logs length: up to 6 m productivity: 12-20 solid m³/h (depending on hauling distance) fuel consumption per hour: 7-111 hourly cost: $\approx 65 - 80 \in$

Woodfuels Handbook, Aebiom, 2009

Hybrid harvester

purchase cost: 240,000 € max cutting diameter: 55 cm max delimbing diameter: 50 cm max negotiable slope: 45-50% productivity: 10-15 solid m³/h fuel consumption per hour: 10-12 | hourly cost: ≈ 80 €

Skidder

purchase cost: 120,000 – 150,000 € skidding capacity: up to 3 t max negotiable slope: 20% productivity: 8 - 12 solid m³/h (depending on hauling distance) fuel consumption per hour: 6-10 l hourly cost: ≈ 55 - 65 €

Tractor-mounted processor

tractor purchase cost: 30,000 € processor purchase cost: 45,000 € max cutting diameter: 48 cm max delimbing diameter: 40 cm productivity: 10-15 solid m³/h fuel consumption per hour: 4-5 I hourly cost: ≈ 35 €

Francescato V, et al. Wood fuels handbook. AIEL, Italien Agriforestry Energy Association, 2008

Excavator-based processor excavator purchase cost: 170,000 € processor purchase cost: 60,000 € max cutting diameter: 65 cm max delimbing diameter: 60 cm productivity: 15-40 solid m³/h fuel consumption per hour: 15 - 17 | hourly cost: ≈ 85 €

Chipper small power

purchase cost: 3,500-35,000 € working diameter: max 20 cm productivity: 2-3 t/h fuel consumption per hour: 5-8 | medium power purchase cost: 15,000-75,000 € working diameter: max 30 cm productivity: 4-7 t/h fuel consumption per hour: 10-14 | high power purchase cost: 31,000-250,000 € working diameter: > 30 cm productivity: 13-20 t/h fuel consumption per hour: 34-38 | hourly cost: \approx 150-190 €

Woodfuels Handbook, Aebiom, 2009

Saw wood

purchase cost: 600-2,000 € *working diameter:* 14-25 cm **Split wood**

purchase cost: 1,500-14,000 € working log length: 0.3-4 m Combined (saw-split wood) purchase cost: 7,000-70,000 €

purchase cost: 7,000-70,000 € *working diameter:* 25-60 cm *working log length:* 2-6 m *hourly cost:* ≈ 70-150 €

Truck and trailer (log transport) truck purchase cost: 110,000-150,000 € trailer purchase cost: 20,000-30,000 € loading capacity: 18-20 t fuel consumption: 2.5-3.5 km/l hourly cost: ≈ 60-75 €

Truck and trailer (wood chips transport)

truck purchase cost: 100,000-115,000 € trailer purchase cost: 45,000 € loading capacity: 20-22 t (85-90 bulk m³) fuel consumption: 2.5-3.5 km/l hourly cost: \approx 65-70 € with clamshell bucket loader purchase cost: 205,000 € loading capacity: 81 bulk m³ hourly cost: \approx 70-75 €

Woodfuels Handbook, Aebiom, 2009

Straw supply chain

Danish Technological Institute

Straw fuel supply chain

Example: cereal straw for biomass boiler

- Harvesting of cereal straw
- Drying / turning of swaths
- Baling
- Loading on field
- Transport to fiel storage / farm storage
- Unloading at storage
- Stacking
- Loading of truck
- Transport to end user
- Storage at end user
- Internal conveying and combustion

Straw fuel supply chain

Harvesting with a combined harvester chaff cutter

Drying, raking and turning of swaths

Tracktor propelled bale press

Danish Technological Institute

Straw fuel supply chain

Loading and unloading of transport truck/trailer to storage

Truck/Trailer transport to storage

Plastic covered outside storage

Danish Technological Institute
Straw fuel supply chain

Truck transport to end-user

Danish Technological Institute

Unloading and storage at end user site

Transport

Vehicle-trailer combination		Feedstock type	Max. cargo space / payload
Farm tractor and (two) tippers	Eline	Wheat straw and wood chips	70 m³ / 21.4 t
Farm tractor and platform trailer		Wheat straw	89 m³ / 18 t
Farm tractor and hook lift trailer for roll-off containers		Wood chips	40 m³ / 23 t
Truck and drawbar trailer		Wheat straw and wood chips	115 m³ / 25 t
Truck and drawbar/hook lift trailer for roll-off containers		Wood chips	60 m³ / 26 t

Rotter and Rohrhofer (2013)

On/Off Loading

Handling equipment Front-end loaders (farm tractor) Telescopic handler Forklift truck Gantry crane

Rotter and Rohrhofer (2013)

Storage

Sto	orage locations (biomass logistics)	Square bales	Wood chips
1	Piles/roadside landing		
2	Intermediate depot		
3	Decentral conversion plant		

Overview

-

- Solid biofuels
 - Feedstock
 - Wood
 - Agricultural residues
 - Energy crops
 - Biomass Logistics and supply chains (harvesting, handling and storage)
 - Woody biomass
 - Agricultural biomass
 - Security of supply
 - Safety aspects
 - Quality control and standardization
 - Modelling of biomass supply chains
 - Best practice examples

Security of supply

- Contracting of biomass suppliers
 - Delivery contacts for biomass fuels
 - Ensuring a timely delivery of the fuel
 - Ensuring the quality of the fuel
 - Ensuring price stability of the fuel
 - Reimbursement in case of contract breach (quality, amounts, time, etc.)
- Storage space
 - Trade off between fuel supply security and investment costs
 - Storage should cover a minimum of one week fuel supply.
 - In many cases bigger storage space is recommended to limit the number of transports and to bridge periods without supply possibility

Safety aspects

- Biomass can be a potentially hazardous material if handled incorrect
 - Self heating of biomass in storage (biological reactions, chemical oxidation)
 - Keep biomass dry and monitor temperature on a regular basis
 - Fresh biomass tends to be more reactive than "old" biomass
 - Oxygen depletion and off-gassing
 - Biomass removes oxygen and releases hazardous gases if strored in closed compartments (carbon monoxide, aldehydes)
 - Ventilation of the storage room before entering.
 - Dust formation during handling of biomass
 - Inhalation of dust is very unhealthy for lungs and respiratory system
 - Dust can form explosive atmoshpeheres (dust-explosion)
 - Wear dust masks and prevent open fire/light in dusty zones. ATEX regulations may apply in biomass storage/handling zones

Quality control

- Standards for solid biofuels
 - EN 14961: Technical specifications
 - EN 15234: Quality assurance
 - Size, shape
 - Mechanical durability (fines and dust formation during handling)
 - Moisture content
 - Bulk density
 - Heating value
 - Ash content
 - Ash composition / Ash melting behaviour
 - Certification schemes for pellets/briquettes i.e. EN-plus certification

Overview

-

- Solid biofuels
 - Feedstock
 - Wood
 - Agricultural residues
 - Energy crops
 - Biomass Logistics and supply chains (harvesting, handling and storage)
 - Woody biomass
 - Agricultural biomass
 - Security of supply
 - Safety aspects
 - Quality control and standardization
 - Modelling of biomass supply chains
 - Best practice examples

Modelling of biomass supply chains

Biomass logistics - Challenges

Challenges

- Different types of biomass
- Seasonal variations (amount & quality)
- Limited storage time (decay)
- Low bulk density

Supply chain management to ensure...

- Availability at the right time
- In the right amounts
- In the proper quality

 \rightarrow Stable and secure biomass supply at predictable (low) costs

Biomass supply chains

Modelling and optimization of biomass supply chains

Evaluation of different scenarios for an optimal supply of biomass to an end-user

- Stable and secure supply
- Quality
- Price

Biomass logistic tool:

- Developed in EUROBIOREF project (EU-FP7 project) by DTI
- Based on Excel and Gams platform
- Tool has been used in different projects and commercial activities
- High flexibility: feedstock, supply chain elements and output parameters

Cereal straw from field to small scale CHP plant in DK

End user: Hillerød Kraft-Varme Værk (Hillerød, 50 km North of Copenhagen, DK) Cereal straw harvested 25 km away from plant

Cereal straw from field to heat and power plant

Supply chain

- 1. Harvesting
- 2. Baling
- 3. Loading
- 4. Field transport
- 5. Unloading / Stapling
- 6. Field storage (covered)
- 7. Loading
- 8. Truck transport
- 9. Delivery at end-user

Data sheet for each step in supply chain

- 1. Harvesting
- 2. Baling
- 3. Loading
- 4. Field transport
- 5. Unloading / Stapling
- 6. Field storage (covered)
- 7. Loading
- 8. Truck transport
- 9. Delivery at end-user

Data sheet

- Process information
- Machinery
- Alternative uses of machinery
- References to literature / manufacturers
- Dry matter in and out
- Bulk density in and out
- Capacity
- Efficiency
- Losses
- Costs (machine, operation, indirect costs, fuel price, salaries, insurance, loans)
- CO₂ emissions

Straw bales for local heat and powerplant

The biomass supply chain modelling tool is available within the project consortium.

The tool can model supply chains for wood and aricultural residues and can be adapted to specific scenarios

The input data has to be exact, since the modelled data is always just as exact as the data you feed into the model

References and further reading

- Rotter S., Rohrhofer C. (2013) Report on logistics processes for transport, handling and storage of biomass residues from feedstock sources to decentral conversion plants. Biomass based energy intermediates boosting biofuel production. FH Steyer, Steyer, Austria.
- Francescato V. et al (2008). Wood fuel handbook. Aebiom AIEL Italian Agroforestry Energy Association.
- Serup H. et al. (2002). Wood for Energy production. Center for Biomass Technology, Denmark
- Sims R.E.H. (2007) Bioenergy Project Development Biomass Supply. International Energy Agency IEA.
- Nikolaisen L. et al. (1998) Straw for Energy Production Center for Biomass Technology. Danish Technological Institute
- Skot T. et al. (2011) Straw to Energy Status, Technologies and Innovation in Denmark. Agro Business Park A/S.
- Alakangas E. et al. (2007) Biomass Fuel Supply Chains for Solid Biofuels. VTT Research Center, Finland
- Monforti, F., Bódis, K., Scarlat, N., & Dallemand, J. F. (2013). The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study. *Renewable and Sustainable Energy Reviews*, *19*, 666-677.
- Böttcher H, Dees M, Fritz SM, Goltsev V, Gunia K, Huck I, Lindner M, Paappanen T, Pekkanen JM, Ramos CIS, et al.: Biomass Energy Europe: Illustration Case for Europe. International Institute for Applied Systems Analysis, Laxenburg, Austria; 2010.
- Eldrup A. et al. (2007) Bioenergy for electricity and heat. Vattenfall and DONG Energy, Denmark.