

ISOR – Iceland GeoSurvey Geothermal exploration and development

- Owned by the Icelandic government.
- Provides specialist services to the Icelandic power industry, the Icelandic government and international companies.
- Operates on the free market on competitive basis.
- Profit goes exclusively into scientific research and to strengthen the company.

- It is based on almost seven decades of continuous experience in the field of geothermal and hydropower research and development.
- Established in 1945 as a part of the State Electrical Authority
- A division in the National Energy Authority (Orkustofnun) 1967-2003.
- Independent company from 2003.

72 employees 2013

In Reykjavik and Akureyri. Approximately 20 students each summer.

- 26 Geologists
- 18 Physicists and Geophysicists
- 5 Chemists and Geochemists
- 8 Engineers and Tecnologists
- 10 Other Academic Education
- 5 Other Education

Activities abroad

Fields of expertise

- Geothermal Exploration

- Geological, Geophysical, Geochemical
- Drilling Consultancy
 - Well Logging and Mud Logging
 - Well Testing and Evaluation
- Resource Assessment and Management

- Environmental Studies
- Groundwater Studies
- Engineering Geology
- Marine Geophysics
- Geothermal Training

Geothermal exploration - geology

- Geothermal mapping
- Stratigraphic mapping
- Structural mapping

Geothermal exploration - geophysics

- surements,
- Resistivity measurements, processing and interpretation
- Seismic surveys
- Seismic monitoring
- Gravimetric measurements
- Surface GPS measurements

38

Geothemal exploration - geochemistry

1500

7095

7090

7085

1585

1680

7080

7100

ad

- Geothermal water
- Ground water
- Gas
- Steam
- Cuttings/cores
- Scaling
- Corosion
- Rocks

Drilling consultancy

- Well siting
- Well design
- Drilling supervision

- Mud logging services
- Well logging services
- On site geological consultancy

Well logging and testing of exploration wells

- Geophysical logging (T, P, GR, NN, SP, Res, Cal etc)
- Injection- and flow testing
- Chemical sampling and analysis
- Well stimulations
- Tracer- and interference testing

Reservoir estimate and management

Reservoir modelling is the key to optimised reservoir management:

- 3D models of the geothermal fields where all available data are used as input.
- Predicts the pressure and temperature decline of the reservoir with time.

Volumetric assessment

- The first step in reservoir potential estimation.
- Using the Monte Carlo method

Geothermal Training

In Iceland and specialized courses worldwide

- United Nations University Geothermal Training Programme
- University of Iceland
- University of Reykjavík
- Iceland School of Energy (ISE)
- Keilir
- Icelandic International Development Agency (ICEIDA)

Activities in Iceland – electricity production

Exploration, drilling consultancy, resource assessment and management

Iceland GeoSurvey has been key actor in the development of district heating in Iceland since 1930.

Geothermal district heating systems:

- Reykjavík:	$1000 \ MW_{th}$
- HS Orka:	$150 MW_{th}$
- Akureyri:	$80 \ MW_{th}$
- Hveragerði:	65 MW_{th}

- Húsavík : 40 MW_{th}

- Step 1: Gathering and evaluation of existing data
- Step 2: Surface Exploration and Exploration drilling
- Step 3: Pre-feasibility report
- Step 4: Drilling and testing of add. exploration/confirmation wells
- Step 5: Concept design, EIA assessment
- Step 6: Feasibility report
- Step 7: Detailed design, construction, drilling, supervision
- Step 8: Testing, commissioning, training
- Step 9. Operation

Project Development Time and cost

Gathering and evaluation of existing data. License for exploration Surface exploration and exploration drilling.

Pre-feasibility report

Drilling and testing of exploration/confirmation wells Environmental Impact. Conceptual design of the Power Plant Feasibility report (bankable). License for Power Plant Detailed design, construction, drilling, supervision Testing, commissioning, training Operation

Geothermal Power Plant Exploration and Construction Cost

On average:

Flash power plant, the cost is 3.5 - 4.5 MUSD/MW installed, Binary, the cost is 6 - 7 MUSD/MW installed

The Nesjavellir Co-Generation Power Plant 120 MWe, 290 MWth

Mats Vibe Lund

	Year 6	64 6	5 66	67	68	69 7	70 7	1 72	73	74	75	76	77	78	79 8	80 8	1 8	2 83	3 84	85	86	87 E	8 8	9 9	9 9	1 9:	2 93	3 94	95	96	97 9	98 5	99 O) 1	2	3 4	i 5
Reykjavik Energy buys Nesjavellir																																					
Exploration drilling (5 wells)																																					
Well data analysis and tests																																					
Surface expl.of the Hengill area																																					
Pilot utilization studies																																					
Appraisal/prod. drilling (19 wells)																																					
Well data analysis and tests																																					
Surface exploration at Nesjavellir																																					
Reservoir evaluation and modeling																																				L	
Reservoir monitoring																																					
Decision, 100 MW thermal plant																																					
Construction																																					
Commissioning of the plant																								С													
Expansion to 150 MWth																																					
Expansion to 60 MWe/200 MWth																														•							
Construction																																					
Commissioning of the new plant																															С	;					
Expansion to 90 MWe/290 MWth																																	•	•			
Construction																																					
Commissioning of the expansion	1																																	С			
Decision to expand to 120 MWe																																			•		
Construction																																					
Commissioning of the expansion	1																																				С

Year	Hot v	Electricity	
	L/s	MWth	MWe
2006			90
2007			33
2008			90
2010	750	133	
2011			90
Total		133MW _{th}	303 MW _e

THANK YOU

www.isor.is