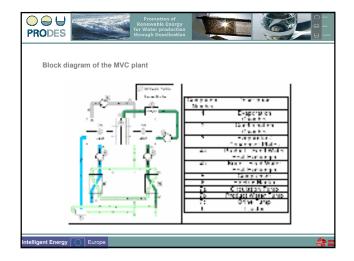
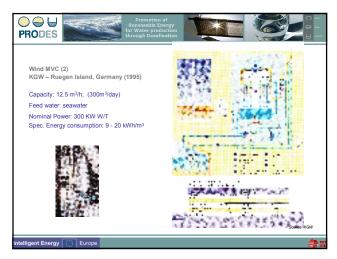
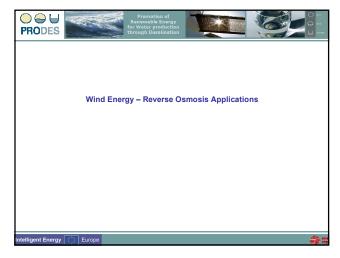


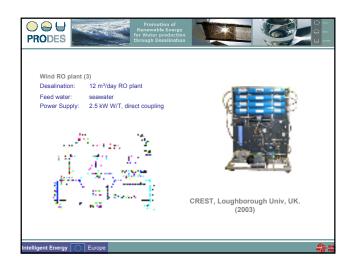
PRODES	
	Wind Desalination
	ţ
PRODES	Lecturer: Eftihia Tzen Wind Energy Sector Email: etzen@cres.gr
art of the presentation is prepared with the contribution of PRODES partners telligent Energy	🆛 (835-1914), 🚉 2014


		F	Promising	Technologi	es Combin
RES	MSF	MED	VC	RO	ED
WEC			4	1	
PV				1	1
Solar Thermal collectors	4	٨			
Geothermal	1	٨			




Location	RO capacity (m ³ /hr)	Electricity supply	Year of installation
Ile du Planier, France	0.5	4kW W/T	1982
Island of Suderoog, Germany	0.25 - 0.37	6kW W/T	1983
Island of Helgoland,Germany	40	1.2MW W/T +diesel	1988
Fuerteventura, Spain	2.3	225 kW W/T + 160 KVA diesel, flywheel	1995
Pozo Izquierdo, SDAWES	8 x 1.0	2x230 kW W/T	1995
Therasia Island, APAS RENA	0.2	15 kW W/T, 440Ah batteries	1995/6
Tenerife, Spain; JOULE	2.5 - 4.5	30kW W/T	1997/8
Syros island, Greece; JOULE	2.5 - 37.5	500 kW W/T, stand-alone +grid connected	1998
Keratea, Greece PAVET Project	0.13	900W W/T, 4 kWp PV, batteries	2001/2
Pozo Izquierdo, Spain, AEROGEDESA project	0.80	15kW W/T, 190Ah batteries	2003/4
Loughborough Univ,UK	0.5	2.5kW W/T, no batteries	2001/2
Milos island, Greece OPC programme	2 x 42	2 x 42 850kW W/T, grid connected	
Heraklia island, Greece OPC programme	3.3	30 kW W/T off shore, batteries	2007
Delf Univ., The Netherlands	0.2 - 0.4	Windmill, no batteries	2007/2008





RES Desalination - Indicative W					
	1120 00	Sumuton - I			
Installation	RES kW	Desalination m ³ /day	Unit Water Cost, €/m ³		
W Solar thermal MED, Almeria	2672 m ²	72	2.5-3		
SW PV RO, Pojo Izquierdo	4.8 kWp PV	9.6	9		
SW Wind RO, Pojo Izquierdo	15 kW WG	19	3-5		
SW PV-RO, Lampedusa	100 kWp PV	120	6		
SW, Geothermal MED plant, Milos island	61ºC	80	<1		
SW Wind RO, Loughborough Univ, UK	2.5	12	1.75		
SW Wind RO Milos island	grid	2000	1.8		
BW Hybrid RO, Maagan	600W WG, 3.5 kWp PV	3	7.5		

What we learned ?

- Preferred renewable energy: PHOTOVOLTAIC
- PVs are reliable but still of high cost
- Preferred desalination technology: REVERSE OSMOSIS
- The main problem on the technologies coupling is the intermittent operation
- Special care on the design and equipment selection
- Need for systems automation
- Need for further reduction of the energy consumption of the desalination units

Intelligent Energy 🔣 Europe

<image><image><image><image><image><section-header><image>

5