

Solar thermal heating systems in European Union

Christodoulaki Rosie MSc Environmental design & engineering BSc Physics Centre for Renewable Energy Sources – Solar Thermal dept.

1. Primary energy demand

Energy consumption in commercial and residential buildings:

- 40% of Europe's energy bill.

- 435 Mtoe in 2002.

Increased demand for air conditioning in buildings:

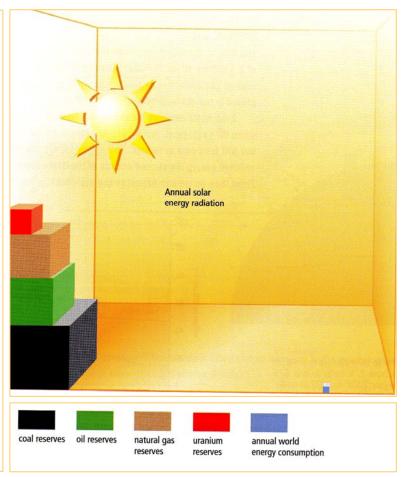
- Higher living and working standards
- Adverse outdoor conditions in urban environments
- Installed a/c has increased 5-fold in the last 20 years in Europe
- Total a/c floor space: 30 million m^2 in 1980, over 150 million m^2 in 2000.

- Annual energy use of room a/c was 6 TJ in 1990, estimated 160 TJ in 2010.

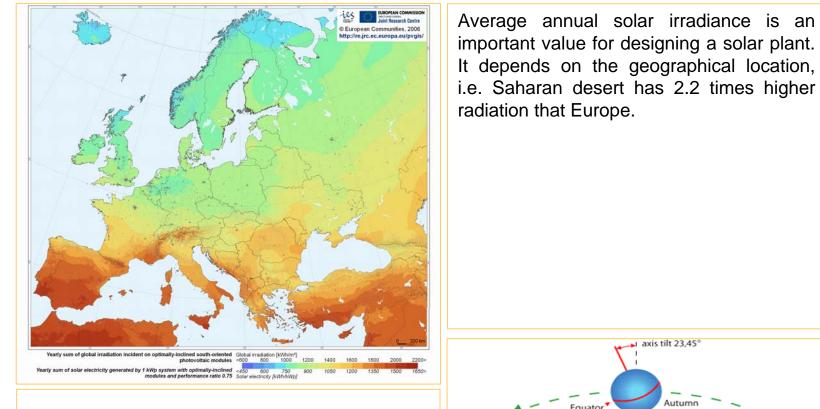
CO₂ emissions are expected to increase 20-fold from 1990 to 2010, only in the EU

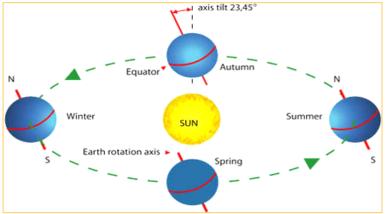
Solar thermal systems can help alleviate the problem!

Pool heating Domestic hot water Space heating Space cooling



The solution : Solar Energy


- Radiation supply from sun carries a 5 billion year guarantee
- Annually, the sun provides 1.5*10¹⁸
 kWh, that is more than 10,000 times the energy that human race needs.


Source: Planning & Installing Solar Thermal Systems: A guide for installers, architects & engineers, EarthScan publications

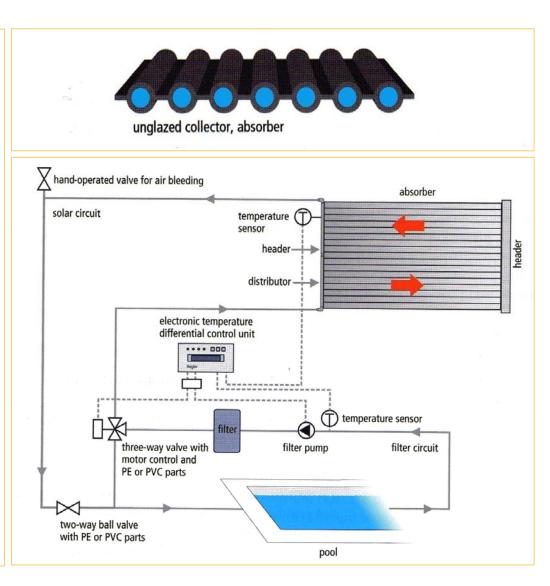
The average solar irradiance is higher at lower latitudes, since the rotation axis of the earth forms an angle of 23.45° with the perpendicular.

Geographical location

- Winter use: geographical latitude of area + 15^o
- **Summer use**: geographical latitude of area 15^o
- **Annual use**: collector angle = geographical latitude

	S OF INCIDENT	RADIA	ATION (ON CO	LLECT	ORS (F	ROM T	SOL)										
Place: Azimuth:	Athens 0																	
Azimum.	0		G Incli	ned Sr	ecific[k	W/h/m21												
G Inclined, Specific[kWh/m²] acording to collectors inclination (in degrees °)																		
From:	To:	0	10	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1/1/	1/2/	66	80	91	96	100	104	107	109	111	112	113	112	111	109	107	104	100
1/2/	1/3/	75	84	91	93	96	97	99	99	99	99	98	96	94	91	88	84	80
1/3/	1/ 4/	104	112	116	118	119	119	119	118	116	114	111	108	104	99	94	89	83
1/ 4/	1/ 5/	146	151	152	152	151	149	147	143	139	134	129	123	116	108	101	92	84
1/ 5/	1/ 6/	182	183	181	178	175	170	165	159	153	145	137	128	119	109	100	90	79
1/ 6/	1/ 7/	200	200	195	191	185	180	173	166	158	149	139	128	118	108	96	85	75
1/ 7/	1/ 8/	213	214	210	205	199	194	187	180	171	162	151	139	128	117	105	91	80
1/ 8/	1/ 9/	200	206	206	204	202	199	194	188	182	174	165	155	144	132	121	109	96
1/ 9/	1/10/	156	168	176	179	180	181	180	178	175	171	166	161	154	146	138	128	118
1/10/	1/11/	106	120	130	134	138	140	142	143	142	142	140	137	134	130	125	119	113
1/11/	1/12/	66	77	86	90	94	96	99	100	101	102	102	101	99	97	95	92	88
1/12/	1/ 1/	53	63	72	76	79	82	85	87	88	89	89	89	88	87	85	83	80
	Sum YEAR	1567	1658	1706	1716	1718	1711	1697	1670	1635	1593	1540	1477	1409	1334	1252	1165	1075
notels seas	son:1/4 to 1/11	1203	1242	1250	1243	1230	1213	1188	1157	1120	1077	1027	971	913	850	784	714	645
ating seas	on: 1/11 to 1/4	364	416	456	473	488	498	509	513	515	<mark>516</mark>	513	506	496	484	468	450	430
"win	ter": 1/12 to 1/3	194	227	254	265	275	283	291	295	298	300	300	297	293	287	280	270	260

Unglazed collectors

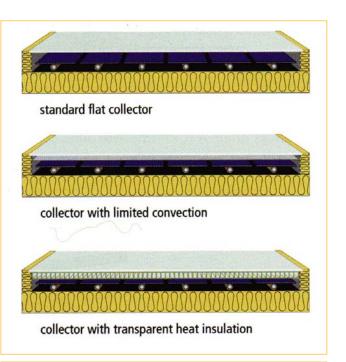


Properties

- No glazing, no insulation
- Low operation temperature
- Low cost, average payback time 1-5 years
- High thermal losses, low performance

Applications

 Pool heating only.
 Warm climates: to extend the swimming period from April-October.



Properties

- Middle cost: more expensive than unglazed, but cheaper than vacuum
- Higher operation temperature
- Thermal insulation on back & edges
- Fragile, heavier: 20-32 kg/m²
- Transparent cover: black paint or spectral-selective coating (black chrome, black nickel, blue titanium)
- Spectral-selective coating: conversion of short-wave solar radiation into heat (light absorption capacity) is optimized, while thermal emissions are kept low. Absorption rate: 90-95%, emission rate 5-15%
- Stagnation temperature: 160-200°C

Applications

- DHW
- Space heating
- Solar air conditioning (selective coating)

Collector type	Cost	Performance (kWh/m²a)	Application		
Unglazed	Low	300	Pool heating		
Flat plate (black paint)	Middle	650	Pool heating, Hot water		
Flat plate (selective coating)	Middle	700	Hot water, space heating, solar a/c		

The solar collector converts the light that penetrates its glass into heat. The generated heat flows then to the hot water store.

Thermosyphon

No pumps, since gravity is used for liquid transport

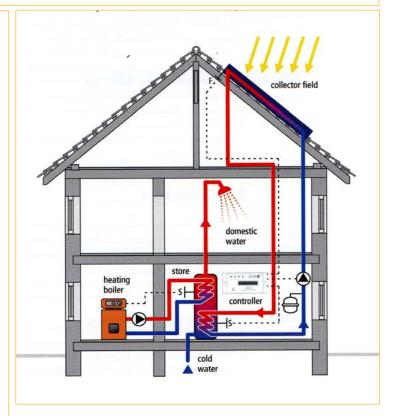
Forced circulation

Circulating pumps required, in Northern - Central Europe

Direct (drainback) system

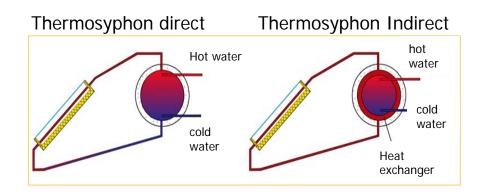
Direct circulation of domestic water through the collector, heat transfer medium: water. When the collector pump is switched off, the collector drains completely.

Indirect (filled) system

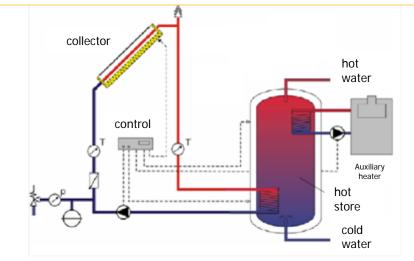

Solar circuit is separate from domestic water circuit, heat transfer medium: water-glycol. The collector circuit is partially or completely filled.

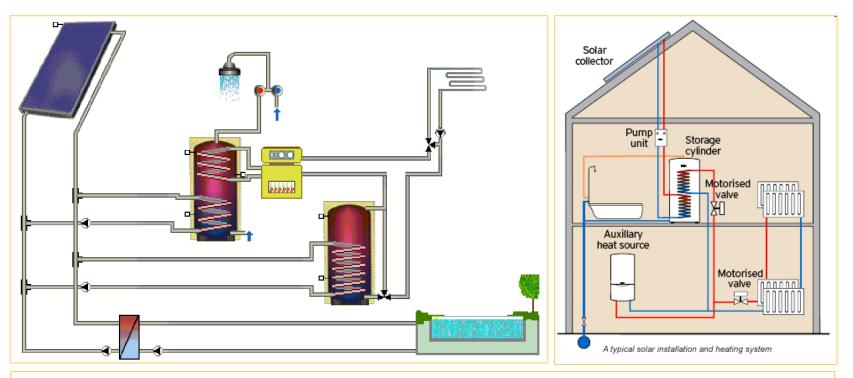
Open system

Open container at the highest point of solar circuit, which absorbs the volumetric expansion of the liquid caused by T changes


Closed system

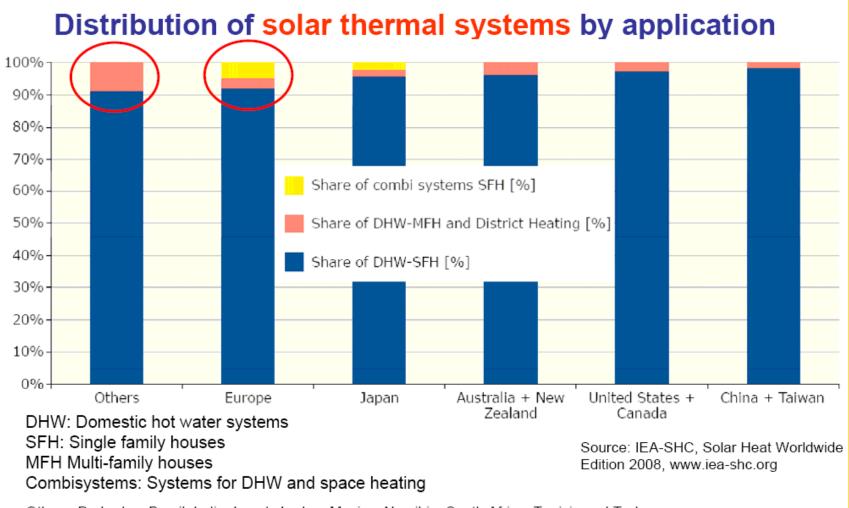
Operate at high pressures (1.5-10 bar), which influences the $T_{evaporation}$ of the liquid.




Forced circulation, indirect

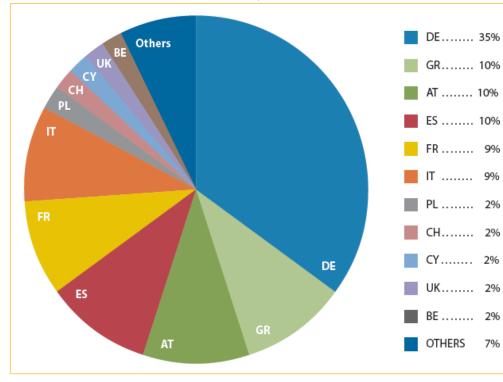
Combi Systems

- Pool heating, hot water and space heating
- Integration into existing fan coil units
- High energy saving potential
- Required collectors: 20% of space for 40-50% covering
- 100% covering with solar collectors & biomass



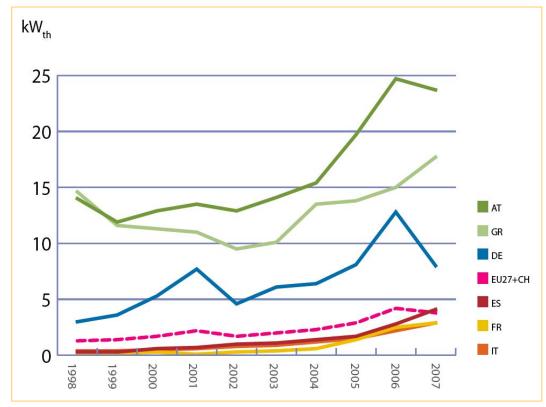
2008							
System	Use	Cost (incl. installation)	Characteristics				
Pool heating	Pool heating	100 € /m² collector	Uncovered collectors, m^2 collector $\approx m^2$ pool				
	Hot water	1,400 €	 150 It boiler, 2.5 m² flat plate collector 				
Thermosyphon	Hot water	1,600 €	150 lt boiler, 2.5 m ² selective flat plate				
	Hot water, Heating	500-750 € /m² collector	1000 It boiler, 15 m ² selective flat plate				
Combi	Professional: Pool heating, Hot water, heating & air- conditioning	400-650 € /m² collector	30.000 It boiler, 500 m ² selective flat plate				

Global Sales



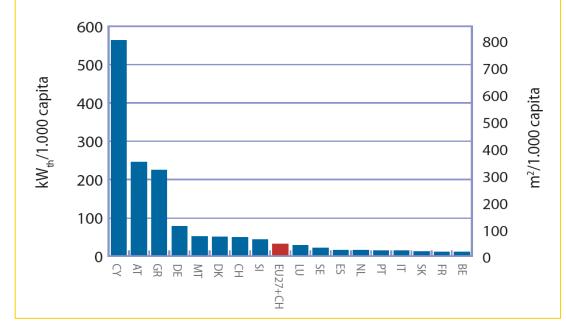
Others: Barbados, Brazil, India, Israel, Jordan, Mexico, Namibia, South Africa, Tunisia and Turkey

Breakdown per country, 2007


- Concentration in the European market is decreasing
- 5 countries account for ³/₄ of the total – just a few years ago the same share was held by Germany, Austria and Greece only
- Greece accounts for 9-10% of European sales.

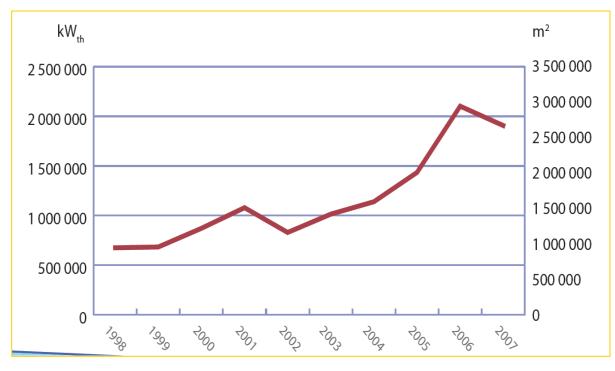
7%

Newly Installed Capacity per Capita in Europe, 2007


- Big advance of Austria: 23,7 kWth per 1.000 capita, almost 3 times than Germany and more than 6 times than EU average (3,8 kWth per 1.000 capita)
- Greece has slowly and quietly increased its per capita market since 2002. Their 17,7 kWth per 1.000 capita is 4,5 times as big as the Eu average.
- France and Italy: Strong growth in recent years, but only 2,9 kWth installed per 1.000 capita each.

Solar Thermal Capacity in Operation, 2007

Solar thermal capacity in operation per 1.000 capacity in 2007


- Cyprus is 1st: 562 kWth in operation per 1.000 capita
- Greece is 3rd
- EU average: 30,7 kWth /1,000 capita.
- Austria shows the rest what is possible: 244 kWth/1.000 capita, 8 times the EU average

The figures relate to all installations built in the past and deemed to be still in operation (ESTIF assumes a life-time of 20 year for systems installed after 1989) and to today's size of the population.

Solar Collectors area in operation, 2007

2001: 12.3 million
 m² glazed collectors in operation
 11,7% increase
 collector in operation

- 13,6% increase new collector area

- 1.6 million m² glazed collectors for pools

2007: 21.9 million
 m² glazed collectors in operation

Large market growth potential

In Greece only 25% of the buildings are equipped with a solar thermal system (>90% of the owners are satisfied)

Seasonal storage

For transferring the energy from low heating season to high heating season.

Solar Cooling

Better utilization of solar energy throughout the year

Law modernization

solar thermal system project study compulsory for every large building Financial incentives

to cover part of investment & construction costs

Thank you for your attention!

Centre for Renewable Energy Sources

Solar Thermal Department

19klm. Marathonos av., 19009, Pikermi tel. 00302106603300, fax. 00302106603301 www.cres.gr R. Christodoulaki rozi@cres.gr

