

Centre for Renewable Energy Sources 19th km Marathon Avenue GR-190 09 Pikermi, Greece Tel: +30 210 66 033 00 e-mail: dfousek@cres.gr

http://www.cres.gr/windrose

A wind data analysis tool

WindRose

User's Guide

Table of Contents

stallation	3
unning the program	
Running <i>WindRose</i> for the 1 st time	4
Registration / Demo version	5
he Input worksheets	
Input	6
PowerCurve	12
uick Check of data	14
he Output worksheets	
Results	15
Windrose	19
Shear	20
TimeCharts	23
Tables	24
3D	25
12pie, 12diurnal	26
BarCharts, Weibull	27
UhourT, UhourG, DIRhourT, DIRhourG	29
WTprodT, WTprodG	30
TempT, TempG, SRadT, SRadG	31
TempData	32
orrelation – Missing data Prediction – MCP meth	od
WindCorr worksheet	33
Methodology	35
ppendix	
Spike detection – Data check – Warnings - Errors	42
Weibull distribution methods	43
Air-density variation with Height	46
Power Curve correction	48
stallation issues	
	40
WindRose.XLS Security warning	49

INTRODUCTION

WindRose is a software tool dedicated to the analysis of wind characteristics (speed, direction, turbulence, temperature). It is not a standalone program, but an *Add-In* to the Microsoft Excel[®] 2000/XP/2003, for the Windows 9x/ME/NT4/2000/XP operating systems. The analysis results are stored graphically and numerically into spreadsheets, which can be further used as ordinary Excel files.

The program is designed to provide all the results of the data analysis, in a customisable form to meet any particular needs. Thus, the user can rearrange all the graphs, resize them, change their colours, copy or link them to other sheets or programs (i.e.: embedded links to Microsoft Word[®] document), create new tables using the numerical results, etc.

Data analysis complies with the requirements imposed by the IEC and MEASNET standards.

Main features

- It performs complete statistical analysis of the wind data, including Weibull distribution constants (per direction sector and global), turbulence intensity evaluation and polar plots (wind roses) of the time and energy distribution of the wind.
- It correlates data from two sites calculating correlation coefficients globally and per ranges of wind speed and direction. As a result, it provides the predicted time-series for the missing data of a site, based on the other site's complete set of data (MCP method).
- Where multiple anemometers and/or wind vanes are present, the vertical wind shear is calculated (per wind speed and per direction sector). Thus, the extrapolation of the wind speed at higher heights (ie: hub height of a wind turbine) is performed more accurately.
- A dozen of power-curves from a variety of wind turbines are included, providing a good estimate of the expected energy production.

- It has a user configurable time step (10 minutes, 1 hour, etc) and it is able to analyse huge data sets (limited only by the available computer memory).
- In case of measurements with systematic errors, a linear correction can be applied for all the measured quantities and separately for each file.
- It includes 3 methods for the air-density correction (due to the site elevation height and to the temperature), which is critical for the correct calculation of the wind energy.
- It produces monthly charts and tables with the per hour variation of wind speed, wind direction, expected wind turbine's power, temperature and solar radiation.

How it works

WindRose reads ASCII files containing columns of data, an output format supported by the majority of data-loggers. Five columns of data are necessary for the program to run: wind speed, wind direction, standard deviation of the wind speed, time and date. Several formats are supported when dealing with date and time. Whenever temperature and/or solar radiation are recorded, the appropriate analysis is performed.

INSTALLATION

Assuming that Microsoft Excel is properly installed, *WindRose* can be installed using the SETUP.EXE program. Administration privileges are required in Windows NT4/2000/XP. At the end of the installation, the *WindRose* option is added in the main menu of the Excel (Figure 1). By opening the *WindRose.XLS* file (default location: c:\Program Files\WindRose), you are ready to run the program for the first time (see below *RUNNING THE PROGRAM*).

Running WindRose within Excel.

Digital Signature Microsoft Excel has security levels that allow users to run macros based on whether or not they are digitally signed by a trusted macro developer. The *WindRose.XLS* file includes some macros and has a digital signature named *WindRose*. The first time that the *WindRose.XLS* file is opened, the user is asked whether or not the macros should be enabled. Answer *yes* so that *WindRose* runs properly and never asked in the future the same question.

If you are not allowed to open the *WindRose.XLS* file with the included macros enabled (might happen if the Security Level of Excel is set to: *High*), then consult the Appendix: *INSTALLATION ISSUES*.

RUNNING THE PROGRAM

Running the program for the first time

Three sample data files (*ST-FLASH.TXT, NOMAD.TXT* and *GenASCII.TXT*) containing wind data are included in the package to facilitate the first run of the program. Moreover, the *Input* worksheet contains already, all the required information to run the wind data analysis for the specific data files. All the user has to do is, to select from the Excel Main Menu, *"WindRose"* and then, *"Run"*¹. The status bar of the Excel should then display the different steps of the program's execution². At the end, the results of the analysis are stored in forms of graphs and/or tables into the different worksheets.

Before calculating the correlations/predictions between 2 sites, *WindRose* has to be run twice, once per site.

The *WindRose* Excel workbook is composed by the following 24 worksheets:

1.	Input	9. Uh	ourT	17.	DIRhourG
2.	PowerCurve	10. Ti	meCharts	18.	DIRhourT
3.	Results	11.3D)	19.	TempG
4.	WindCorr	12.12	diurnal	20.	TempT
5.	Tables	13.12	pie	21.	SradG
6.	Weibull	14.Ba	rCharts	22.	SradT
7.	Upolar	15.Wt	prodG	23.	TempData
8.	UhourG	16.Wt	prodT	24.	Air-Density

Two worksheets (*Input* and *PowerCurve*) are used for defining all the necessary parameters to run the program. The remaining worksheets are used for presenting graphically and numerically the results of the analysis. The content of all the worksheets is explained in detail in the following paragraphs.

Note

• When working with the original *WindRose.XLS*, keep it unchanged for future use, by saving it at the end of the analysis (using the *Save As...* option) with another name.

¹ If the default program path: c:\Program Files\WindRose was changed during the installation, then modify accordingly the paths of the 3 provided sample files in the *Input* sheet.

 $^{^2}$ During the program execution and under certain circumstances, the PC may not respond for a few seconds.

Demo version Registration

The demo version of the *WindRose* (for unregistered users) incorporates <u>all</u> the features of the full version, but is limited to analysing measured data that do not exceed <u>31 days</u>. Registered users are given a code, which is entered using the *WindRose* menu within Excel.

Import OLD WindRose.XLS files

Excel files created with older versions of *WindRose*, can be imported using the *"Import..."* option of the *WindRose* menu (see figure below). Regarding older files, this version of *WINDROSE.XLS* has some new input parameters and graphs, therefore some graphs and tables may not display correctly.

🖹, Import	×
Imports the input settings from other WindRose files (including older versions) Choose what to import:	OK Cancel
 ✓ Input Sheet ✓ WindCorr Sheet ✓ PowerCurve Sheet ✓ Excel file created with WindRose : 	
c:\old_data\WindRose_14.xls	Browse

THE INPUT WORKSHEETS

Input

Four tables compose this worksheet, which deals with the input data and the necessary parameters required by the program.

The <u>first table</u> contains the names of the files to read, as well as, the column numbers of the wind speed (in m/s), wind direction (in degrees), standard deviation of the wind speed (in m/s), wind gust (in m/s), temperature (in Celsius degrees), solar radiation (in W/m²), time and date. The number of the lines in the beginning of each file, containing blank lines or comments is also given here. Apart from the temperature and the solar radiation column numbers, the remaining five are mandatory. If the order of the files is not the chronological one (from older to newer data), then the data are automatically sorted, but some additional memory is needed for that. However, this is transparent to the user.

	Со	lum	n N	um	ber				
File Names	Vind Speed (m/s)	Wind Direction (°)	Wind Speed SDV	Temprature (°C)	Solar Radiation (W/m2)	Gust of Wind Speed [m/s	Time	Date	Lines to skip
c:\windrose\site1\winddata1.txt	5	9	6			4	2	1	15
c:\windrose\site1\winddata2.txt	5	9	6			4	2	1	15
c:\windrose\site1\winddata5.txt	5	9	6			4	2	1	15
c:\windrose\site1\oldLogger1.dat	1	2	4			3	10	12	0
c:\windrose\site1\winddata1.txt	5	9	6			4	2	1	15
c:\windrose\site1\testcase.new	1	20	2			19	8	12	0

File names and column numbers (sheet Input).

Delimiting characters (within the ASCII data files)

It is expected that ASCII files contain some comment lines in the beginning, followed by at least 5 columns of data. The accepted characters delimiting (separating) the columns are the following:

- The space
- The comma (,)
- The semicolon (;)
- The 2 parentheses
- The tab
- The double quotation marks (")

Time format

WindRose accepts as time format, when reading ASCII files, the following forms:

hh:mm:ss , hh.mm.ss , hhmmss , hh:mm , hh.mm , hhmm

Note that, if none of the delimiting characters: \therefore are present and there are only 1-2 digits then, it is considered that this is just the hour of the day (i.e.: 5 is taken 05:00:00). If 3-4 digits are found then, the last two represent the minutes and the first one(s) the hour. Similarly, if 5-6 digits are found (not delimited by semicolon) then, the last two represent the seconds, the middle two the minutes and the first one(s) the hour.

Other custom formats i.e.: the 12-hour form using am and pm (i.e.: 1:50pm) and the French-style h (i.e.: 13h50) can be supported on demand.

Finally, there are cases where time comes in the form of <u>incremental</u> <u>steps</u> from the beginning of the day. Thus, the time column is filled with integers increasing from 1 to 144 (time step=10min) or from 1 to 1440 (time step=1min) etc. In this case we add the character *s* right after the column number. For example if the time column was the 9th we put 9s.

Date format

WindRose defaults to the European date format, but also accepts other date formats. If the date has one of the following (European) formats, then it is directly read.

ddmmyy , ddmmyyyy , d/m/yy , dd/mm/yyyy , d.m.yy , dd.mm.yyyy , d-m-yy , dd-mm-yyyy

The acceptable delimiting characters for the date format are: / . - .

If the American format is used (mm/dd/yy, mmddyyyy, etc) then, right after the column number of the date, we put the character u i.e.: for the 10th column we write 10^u.

If the "international" date format is used (yymmdd, yyyy.mm.dd, etc) then after the column number of the date, we put the character i i.e.: for the 10th column we write 10i.

Measurements data coming from the **NOMAD data logger** use another date format. I.e.: for the 26^{th} September 1998 it is written: Sep 26, 1998 When reading such files, the above sequence should be considered as <u>one column</u> (instead of 3). Additionally, right after the column name we put the character n i.e.: for the 10th column we write 10n.

Some models of the **CAMPBELL data loggers** use another particular date format: An integer number is given indicating the number of days elapsed from the beginning of the year. Thus, for the 26th September 1998 it is written: 1998, 269

This case is treated by adding the letter c right after the date column number i.e.: for the 10th column we write 10^c However, the daycolumn: i) has to be next to the year column (i.e.: 11th in the previous example) ii) should not be the file's last one and iii) is normally counted when numbering the columns of the ASCII file.

Below, some examples are given showing how the *Input* sheet should be filled³.

WindSpeed	Dir 	Usdv	Gust	Time	Date		5	[s/ш	
14.3 14.3 13.9 14.1 13.4 13.1 12.4 12.6 12.8 12.4 13.2 13.3 12.8	137.6 144.6 146.5 144.0 146.6 144.3 142.1 140.6 146.5 144.1 147.8 150.3 148.3	2.9 2.8 2.9 2.7 2.6 2.8 2.5 3.2 3.0 3.0 3.0 2.5	22.7 21.9 21.1 22.7 21.1 20.4 20.4 19.6 21.9 21.1 20.4 20.4 20.4 21.1	0:7 0:17:00 0:27:00 00:37:00 00:47:0 0057 0107 0117 01.27.00 01.37.00 1.47.00 015700 020700	01/12/00 1/12/00 1/12/0 1-12-2000 1.12.2000 1.12.000 1-12-2000 01122000 01122000 01122000 01122000 01122000	<pre>vind Speed (m/s) Wind Direction (*) Wind Speed SDV </pre>	Temperature (°C) Solar Radiation (W/m)	<mark>- A</mark> Gust of Wind Speed [DateLines to skip
WindSpeed 14.3 14.3 13.9 14.1 13.4 13.1 12.4 12.6 12.8 12.4 13.2 13.3 12.8	Dir 137.6 144.6 146.5 144.0 146.6 144.3 142.1 140.6 146.5 144.1 147.8 150.3 148.3	Usdv 2.9 2.8 2.9 2.7 2.6 2.8 2.5 3.0 3.0 3.0 3.0 2.5	Gust 22.7 21.9 21.1 22.7 21.1 20.4 20.4 19.6 21.9 21.1 20.4 20.4 20.4 21.1	Time 0:7 0:17:00 0:27:00 00:37:00 00:47:0 0057 0107 0117 1.27.00 1.37.00 1.47.00 015700 020700	Date 12/01/00 12/1/0 12-1-2000 12.1.2000 12.1.2000 12-1-2000 12/1/2000 12012000 12012000 12012000 12012000 12012000	<pre>Wind Speed (m/s) Wind Direction (°) Wind Speed SDV</pre>	Temperature (°C) Solar Radiation (W/m2)	 F Gust of Wind Speed [m/s] Time 	C Date C Lines to skip
WindSpeed 14.3 14.3 13.9 14.1	Dir 137.6 144.6 146.5 144.0	Usdv 2.9 2.8 2.9 2.9 2.9	Gust 22.7 21.9 21.1 22.7	Time 0:7 0:17:00 0:27:00 00:37:00	Date 00/12/01 00/12/1 0/12/1 2000-12-1	ed (m/s) ction (°) ed SDV	rre (°C) ation (W/m2)	ind Speed [m/s]	¢ip
						Spee Dire	eratu Radi	of W	to sl

23

5 6i

³ Intentionally (for better understanding), the first lines of the date and time columns contain various format types.

WINDROSE : Wind Data Analysis software

		13.4 13.1 12.4 12.6 12.8 12.4 13.2 13.3 12.8	146.6 144.3 142.1 140.6 146.5 144.1 147.8 150.3 148.3		2.7 2.6 2.8 2.5 3.2 3.0 3.0 3.0 2.5	21. 20. 20. 19. 21. 21. 20. 20. 21.	1 (4 (6 (9) 1) 4 (1) (00:47 0057 0107 0117 1.27. 1.37. 1.47. 01570 02070	:0 200 00. 200 00 200 00 200 00 200 00 200 0 200 0 200	00.12.1 12.1 00-12-01 00/12/01 001201 001201 001201 001201 001201								
Site Name: Site Number	SOM r: 1	EWHERE																
Start Time: Finish Time Total Time:	: 18 e: 15 : 25	:57 03/ :00 03/ day(s)	01/2000 27/2000 20 hour	(s) 3	min	ute(s)												
DATE	TIME	Anem A Other An Average 10 minut m/s	Anem A Other An Avg Dev 10 minut m/s	Ane Oth Min 10 m/s	em A Ner A Nimum Minu dir	n t time	An Ot Ma 10 m/s	em A her A ximun minu dir	An n it time	Vane A Wind Van Average 10 minut								
Mar 1,2000 Mar 1,2000 Mar 1,2000 Mar 1,2000 Mar 1,2000 Mar 1,2000 Mar 1,2000 Mar 1,2000 Mar 1,2000) 18:57) 19:00) 19:10) 19:20) 19:20) 19:30) 19:40) 19:50) 20:00) 20:10	10.1 11.5 12.2 12.1 11.2 10.9 10.8 10.4	1.2 0.8 0.7 0.7 0.7 0.6 0.8 1.0 1.2	7.9 9.4 10.6 10.0 9.6 9.1 9.1 8.4 8.2	236 221 226 225 228 225 243 277 246	18:59 19:05 19:17 19:22 19:31 19:44 19:54 20:04 20:15	11.6 13.2 13.4 13.1 12.4 12.0 12.7 13.0 15.8	211 219 224 228 219 233 245 250 245	18:59 19:04 19:19 19:25 19:30 19:49 19:59 20:06 20:18	222.2 222.2 222.2 226.4 227.8 226.4 236.4 236.2 250.3 250.3	Wind Speed (m/s) Wind Direction (°)	Wind Speed SDV	Temperature (°C)	Solar Radiation (W/m2)	Gust of Wind Speed [m/s]	Time	Date	Lines to skip
Mar 1,2000	20:20	12.3	1.2	9.8	250	20:21	14.3	246	20:25	251.7	3 11	4			8	2 ′	1n	13

Multiple anemometers - vanes (within the same mast)

When multiple anemometers and wind vanes are present, *WindRose* provides some additional results (i.e.: wind shear, Weibull distributions per height, etc). In that case, the column numbers of each device, should be separated by a semicolon ;. Furthermore, the heights of the anemometers should be set accordingly (in ascending order) in the 2^{nd} table of the *Input* sheet.

Setting the corresponding anemometers heights (Input sheet's 2nd table). In this example the 21st column contains the wind speed at 10m height.

The <u>second table</u> of the *Input* sheet contains all the necessary parameters characterising the analysis to be performed. These parameters are:

- The measuring period (start and end dates)
- The time interval of the measurements (10 minutes, 1 hour, etc)
- The limit for the calm, which is the value of the wind speed below which the response of the wind direction measuring device is not reliable (recommended value: 2m/s)
- The number of the direction sectors (16, 12 or 8) that the program will use (recommended value: 16)

Title1	(Site's name)
Title2	(comment)
Start from	18/12/1999
End at	29/5/2000
Minutes between data	10
Limit for calms (m/s)	2
Number of Direction Sectors	16
	10
Measurements Height :	
above Ground level (m)	10
above Sea level (m)	300
Calcul. of mean turbulence	
at wind speed (m/s)	10
± bin width (m/s)	1
Wind Turbine selected	NEG Micon 750/48
Exponent coefficient (α)	0.08
Exponent coefficient (α)	0.08
Exponent coefficient (α) Weibull method	0.08 "paper" method ▼
Exponent coefficient (α) Weibull method Iow limit (m/s)	0.08 "paper" method ▼ 4
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s)	0.08 "paper" method ▼ 4 16
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s)	0.08 "paper" method ▼ 4 16
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s) Wind Speed Uncertainty	0.08 "paper" method ▼ 4 16
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s) Wind Speed Uncertainty Calibr. error at Umean (m/s)	0.08 "paper" method ▼ 4 16 0.06
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s) Wind Speed Uncertainty Calibr. error at Umean (m/s) Anemometer's max speed m/s	0.08 "paper" method ▼ 4 16 0.06 40
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s) Wind Speed Uncertainty Calibr. error at Umean (m/s) Anemometer's max speed m/s Data Logger's precision (bits)	0.08 "paper" method ▼ 4 16 0.06 40 8
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s) Wind Speed Uncertainty Calibr. error at Umean (m/s) Anemometer's max speed m/s Data Logger's precision (bits)	0.08 "paper" method ▼ 4 16 0.06 40 8
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s) Wind Speed Uncertainty Calibr. error at Umean (m/s) Anemometer's max speed m/s Data Logger's precision (bits) Site Correlation	0.08 "paper" method ▼ 4 16 0.06 40 8
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s) Wind Speed Uncertainty Calibr. error at Umean (m/s) Anemometer's max speed m/s Data Logger's precision (bits) Site Correlation file name	0.08 "paper" method ▼ 4 16 0.06 40 8
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s) Wind Speed Uncertainty Calibr. error at Umean (m/s) Anemometer's max speed m/s Data Logger's precision (bits) Site Correlation file name	0.08 "paper" method ▼ 4 16 0.06 40 8
Exponent coefficient (α) Weibull method Iow limit (m/s) high limit (m/s) Wind Speed Uncertainty Calibr. error at Umean (m/s) Anemometer's max speed m/s Data Logger's precision (bits) Site Correlation file name Export processed data	0.08 "paper" method ▼ 4 16 0.06 40 8

The necessary parameters for the wind data analysis (sheet Input)

- The Weibull distribution calculation method. In brief, 2 methods are proposed for the calculation of the (k, C) coefficients: a) using only the mean and the standard deviation of the wind speed and b) using the data distribution, restricted or not to a specific range (i.e.: 4-16m/s).⁴ The second method is recommended. More details can be found in the Appendix § WEIBULL DISTRIBUTION.
- The wind speed uncertainty in case of analogue anemometers (i.e.: the output signal of the anemometer is analogue). These parameters are not used in case of anemometers producing pulses/revolution.⁵
- The name of the (intermediate) file that must be created when site correlation will take place (details in the *CORRELATIONS* chapter).
- The name of an ASCII file into which all the row data are exported. This is particularly useful when delivering long term data (i.e.: yearly) that are stored originally in many files and/or to which correction coefficients were applied⁶.

A sample of the correction coefficients table (sheet Input).

The <u>third table</u> of the *Input* sheet includes correction coefficients per each file. The correction applied has the form: $\alpha x + \beta$ and is intended for the processing of measured quantities, when:

1. A systematic error occurred during the measurements campaign (i.e. wrong calibration factors, additional offset for the "zero" of the wind vane, etc)

⁴ The 2 values below the selected Weibull calculation method are taken into account only if the 2nd method is selected.

 $^{^5}$ Uncertainty calculation for "pulsed-ouput" an emometers will be added in the next program release.

⁶ The created export file includes all the corrections, so no corrections should be applied if it is further processed.

2. Recorded data have different units (temperature in Fahrenheit degrees, wind speed in miles/h, wind direction in radians, etc...)

If no values are given, then the multipliers α and the offsets β are set to 1.0 and 0.0 respectively.

The following important issues have to be pointed out when applying correction coefficients:

- If the wind speed has to be adjusted by means of the correction coefficients, then its standard deviation is automatically multiplied by the coefficient (α).
- When adjusting wind directions, if the resultant direction angle falls out of the [0°, 360°] interval then, is automatically adjusted.
- Applying correction coefficients on the time/date should be done with caution. Although, there is no problem using the offset β (in seconds), in order to simulate a wrong day or time setting, the multiplier α (if ≠ 1.0), can seriously affect the reliability of the measurements, as it modifies the sampling rate (time step) of the measurement campaign.

The **fourth table** of the *Input* sheet deals with the calculation method of the air-density, which seriously affects the wind energy calculations. Three are the possible choices:

Air Density	
Method 1 : p	= f(z) 💌
Method 1 : p	= f(z)
Method 2 : p	$= f(\theta, z)$
	Delow
ų te	
ŧ	lue
Ň	20
Jan	1.142
Feb	1.124
Mar	1.124
Apr	1.106
May	1.089
Jun	1.073
Jul	1.057
Aug	1.057
Sep	1.073
Oct	1.089
Nov	1.106
Dec	1.124
[[ºC/km]	6.5
0	15
(for Method 2	only)

Selection of the method for the Air Density correction.

- The *"first method"* uses an empirical formula relating air-density only to the anemometer elevation (site height + anemometer height).
- The "second method" calculates air-density using both the height and the temperature. Two additional values are required: the vertical temperature gradient *Γ* (recommended value: 6.5°C/km) and the estimated mean ground temperature (for the measurements period). If temperature data exist into the data files, then the recorded mean value is used instead.
- The *"third method"* uses 12 preset values, one per each month of the year. These values can be retrieved either from a nearby meteorological station or set intuitively.

The mean value of the air density used during the calculations is given in the *Results* sheet. More details on the air-density calculation methods and on the power curve corrections are given in the Appendix.

Power Curve Pairs of columns, containing power curves of various wind turbines, compose this worksheet. Some representative power curves are included by default, but the user can add more or delete the existing ones. One restriction applies here: The user has to respect the form of the existing power curves (i.e. put in the Row1 cell the model name of the wind turbine, in the Row2 cell of the next column the tower height, choose the power control strategy, etc.).

Note

- A linear interpolation is performed in order to calculate the exact electrical power of the wind turbine, between the given values of the power curve.
- Whenever the measured wind speed is lower than the minimum value or greater than the maximum value of the power curve's wind speed then, the power is considered as zero and the wind turbine as out of operation.

Left: A sample of a power curve table (sheet PowerCurve). *Right:* Its graphical representation including the correction due to the site elevation height (sheet Input)

QUICK-CHECK OF THE DATA

Once the input sheets are filled correctly, the user can launch the *WindRose* by selecting *Run in English* or *Run in Greek* depending on the language in which the results will be displayed. Execution time depends on the amount of data; normally a Pentium-4 PC will take $\frac{1}{2}$ minute to run 1-year data. When the execution is finished the figure below will appear displaying <u>all</u> the processed valid data. This is an important feature of the program, since Excel graphs cannot contain unlimited amount of data and the user interaction (zooming, scrolling) is limited.

Detailed view of <u>all</u> the processed data. Note that:

a) zoom operation is possible by selecting a region with the mouse

b) scrolling (panning) is achieved by holding the mouse down and dragging it to the desired direction.

An experienced user will find this screen particularly useful, as he can quickly deduce the quality of the data (spikes, fault operation of a device, etc.).

Displaying a smaller data "window" is also possible when the *View Mode* is set to: *Zoom X & Y* (or *Zoom X* if zooming is done only in the time axis). When a smaller data "window" is displayed, the user can smoothly move forward or backward, by selecting *Pan X & Y* (or *Pan X* just for the time-axis) and holding down the mouse while dragging it to the desired direction.

THE OUTPUT WORKSHEETS

Results

This one page sheet presents the summary of the performed analysis. The displayed quantities are:

Measurements Period : from 4/2/2002 to 3/2	/2003	
Mean Annual Wind Speed (at 40m height)	6.2 m/s	(general mean= 6.0 m/s)
Mean Turbulence Intensity (at 10m/s)	9.2 %	(3)
Max, 10min Average Wind Speed	27.2 m/s	(6/1/2003 07:50)
Maximum Gust	34.1 m/s	(6/1/2003 07:40)
Uncertainty of Wind Speed measurement	0.2 m/s	(
Mean Wind Power	307.8 Watt/m ²	
Total Wind Energy	2477.1 kWh/m²	
Weibull Distribution constants		
shape factor (k)	1.62	
scale factor (C)	6.7 m/s	
Total number of valid data	48280	
Included number of calms (<2m/s)	5593	
Missing data	4280 (8.1%)	
Expected W.T. energy production	3 740 376.3 kWh	(Gamesa G80-2.0M
W.T. Capacity Factor	23.2 %	(ρ _{ave} =1.148kg/m ³)
Calc. <u>Annual</u> Mean Wind Speed at 67m height	6.6 m/s	(general mean= 6.5 m/s)
WT <u>Annual</u> Energy Production & cap. factor		
calculated from data distribution	4 157 412.3 kWh	23.71 %
calculated from Weibull distribution	4 121 376.8 kWh	23.51 %
Best Sector in Energy contain	NNW 41.22 %	
2nd best Sector in Energy contain	SSE 20.64 %	•
Best Sector in Time distribution	NNW 29.95 %	
2nd best Sector in Time distribution	SSE 23.59 %	

Time Distribution

The main results of the WindRose program (worksheet: Results).

- The mean wind speed. Note that, if more than 1-year data exist then, apart from the mean value of all the wind speed data, the *"annual mean"* is also provided. The calculation method of this value (see § below) assures that non-stationary effects, such as seasonality, are not taken into account.
- The turbulence intensity (at the specified wind speed range).
- The maximum wind speed and the date of its occurrence
- The maximum gust (1sec value) and the date of its occurrence (if a gust column was set in the *Input* sheet).
- The mean power of the wind per area (in units of kW/m^2).
- The total wind energy per area (kWh/ m²).
- The coefficients of the Weibull distribution that fits all the data.
- The total number of valid data within the specified time period (by the Start-Stop dates given at the *Input* sheet)
- The percentage of the missing data.
- The number of calms (wind speed below a threshold)
- The expected electrical energy production (kWh) of the selected wind turbine during the given period of measurements, for all the valid data.
- The capacity factor of the wind turbine (percentage of the nominal power of the wind turbine, at which the machine should operate continuously to produce the expected electrical energy)
- The estimated mean wind speed at the nacelle height of the wind turbine. Similarly with the measured mean wind speed, if more than 1-year data exist, then the given value is the average of 12 monthly values. Each monthly average value is weighted with the completeness of the given month for all the years.
- The expected Annual Energy Production (AEP) in kWh and the corresponding capacity factor. Both are calculated by two methods: a) from the data distribution and b) from the Weibull distribution. If 12-month data exist, then the AEP is calculated from the 12 distributions. In the opposite case (less than 1-year data), the AEP is calculated from the general average distribution.
- The two best direction sectors in wind energy contain.
- The two best direction sectors in terms of time.

Note that, the "*annual mean*" wind speed calculation takes into account the various data completeness of each month, during all the years of measurements. Averaging the 12 months, assures that the result a) represents the 1-year reference period and b) is not biased by data that fail to cover exactly 12, 24, 36, etc months. Below, an arithmetic example is given, representing the described procedure.

STEP 1			STEP	2		
Month	Mean Wind Speed	Data Complet.	Month	Mean Wind Sp	Dat eed Cor	ta mpleteness
Jan. 2003	9.3	100 %	Jan.	9.86(*)	77	e e
Feb. 2003	7.0	100 % 100 %	Feb. Mar	7.64	100	5 9
Apr. 2003	6.3	60 %	Apr.	7.36	80	9 9
May 2003	5.3	100 %	May	6.3	100	0-10 10
Jun .2003	6.9	100 %	Jun.	6.45	91	90
Jul. 2003	7.7	99 %	Jul.	7.7	99	00
Aug. 2003	8.5	90 %	Aug.	8.5	100	00
Sep. 2003	6.0	100 %	Sep.	6.0	100	00
Oct. 2003	6.4	100 %	Oct.	6.4	100	00
Nov. 2003	8.1	100 %	Nov.	8.1	100	00
Dec. 2003	7.9	75 %	Dec.	7.9	75	20
Jan. 2004	10.9	54 %				
Feb. 2004	8.3	98 %	STEP	3		
Mar. 2004	6.3	100 %				
Apr. 2004	8.0	100 %	Mean	Annual N	Wind S	peed = 7.4
May 2004	7.3	100 %	= (9.	86+7.64+	6.6+7.3	36+6.3+6.45+
Jun. 2004	5.9	82 %	+7.	7 +8.5 +	6.0+6.4	4 +8.1+7.9)/12
			1		(0.041	0.10 0.0 542 (1

Why 3 values for the expected W.T. Energy production?

- The 1st value refers to the energy production of the wind turbine for the <u>given time period</u>, while the other 2 refer to the <u>annual</u> production.
- The 1st value <u>depends on the missing data</u>, as it is calculated only by the valid data, within the given time-period. The other 2 values are the outcome of the projection of the 2 distributions (data and Weibull) to 1-year. Thus, the notion of missing data is not applicable to them.
- If the given time-period (defined by the *Start*, *Stop* dates) is one year then, the 3 values should converge. In fact, if there is no missing data then, the 1^{st} and the 2^{nd} values should be practically the same. If the 3^{rd} value is close enough to the other two, it means that the given Weibull distribution coefficients (*k*, *C*) fit

well the data and can be used safely to characterize the site.

• For the same reasons there are also <u>3</u> wind turbine <u>capacitor factors</u>.

How the W.T. Energy production is calculated?

- The wind turbine energy production is based on the wind speed estimation at hub height. If measurements are not taken at the WT's hub height, then the wind speed is extrapolated to that height. For that, the "power law" is used in order to calculate the wind shear.
- When the wind speed is measured at different heights, then the detailed wind shear (per direction and per wind speed) is calculated. If the wind speed is measured at only one height, then a uniform shear is assumed, based on the exponent coefficient α of the power law.
- Having calculated the wind speed time-series at hub height, the energy production is evaluated using the "corrected" power curve.
- Usually, the power curves given by the WT manufacturers refer to the sea level, where $\rho=1.225$ kg/m³. Therefore, the air density at the specific site elevation needs to be evaluated (using 3 different methods, including or not temperature timeseries, etc). Finally, this *local* air density and the type of the power control of the wind turbine (i.e.: stall or pitch), provide the "corrected" power curve, according to the IEC-61400-12 recommendation.

Two charts are shown below the results table: A pie chart presenting schematically the most prevailed directions of the site and a polar chart showing the variation of the mean wind speed as a function of the direction.

Finally, the data distribution in time per direction sector is given. Each bar is composed by 4 parts, depending on the percentage of time that

the wind speed at the specific sector falls in the 4 preset ranges⁷: [2m/s-5m/s), [5-10m/s), [10-15m/s), [>15m/s).

WindRose This sheet is composed by the total and the monthly wind roses (distribution chart in polar co-ordinates). They present the wind speed distribution (%) per direction, in the time and energy domain.

Samples of a site's wind roses (total and monthly)

Note that, for maximum precision, the polar plots are divided in 64 sectors, each 5.625° (=360°/64) wide. Each point of the drawn line, represents the mean value of all the data within this sector, i.e. the value of the distribution at 0° is the mean value of all the data found within the sector [-2.8125, +2.8125).

It is reminded here that, in order to calculate both time and energy distributions per direction sector, only data with wind speeds greater than the calm limit (set in the *Input* worksheet) are taken into account. If the user wants to change this and take into account the total data, he has to set the calm limit to 0m/s and re-run the program.

Finally, note that the energy refers to the energy of the wind, not the estimated electrical energy of the wind turbine. Although, in most of the cases the two distributions are identical, differences might exist in case of very high wind speeds (greater than the cut-out wind speed), where the wind turbine is supposed to shut down.

⁷ The low limit is actually the calm threshold value (as set in the *Input* sheet), below of which the response of the wind direction measuring device is not reliable.

This Excel worksheet is created automatically only if multiple anemometers are present. The first graph shows the mean wind speed values (as measured) along with the average vertical wind shear. Wind shear calculations are based on the "power law":

$$u(z) = u(z_{ref}) \left(\frac{z}{z_{ref}}\right)$$

where the z_{ref} denotes the height at which the wind speed $u(z_{ref})$ is measured and α is the wind shear exponent coefficient.

Mean wind speed per height – measurements & mean vertical shear (sheet Shear)

The next table shows the measured mean and max wind speeds per direction and per height. At the end, the calculated values are given for the hub height of the selected wind turbine. The variation of the Weibull coefficients per height and per direction is given in another separate table. Both tables provide results at hub height, based on the extrapolated wind speed time-series at that height (from the higher anemometer) using the wind shear results.

The last table of this worksheet presents in detail the average value of the exponent coefficient α of the "power law" per wind speed and per direction. For each time step one value of α is calculated. Values of α are considered valid, only if the goodness of fit R²> 0.95. Note that, a) this value is user selectable from "*Advanced Options*..." of the *WindRose* menu and b) it is displayed on the top of that table, along

with the data percentage satisfying that condition, providing thus an indication of the validity of the Power Law at the specific site.

Measured wind speed (black dots) and calculated wind shear: Goodness of fit criterion: Left: R²<0.95 rejected. Right: R²>0.95 accepted

Averag	e and	Max (10	min) w	ind spe	ed per	directi	on								_
Height	U	NNE	ENE	E	ESE	SSE	S	SSW	wsw	w	WNW	NNW	N	All Dirs	
10	Ave	6.84	5.59	3.62	3.19	4.37	5.35	5.04	5.07	4.76	3.88	6.06	6.98	5.75	(measured
	Max	16.85	13.52	8.18	8.79	16.57	13.06	12.34	11.84	10.91	10.88	16.03	19.03	19.03	
20	Ave	7.29	6.07	3.78	3.35	4.57	5.61	5.39	5.66	5.57	4.27	6.42	7.32	6.17	
	Max	17.58	14.48	8.86	9.17	16.75	13.15	13.11	13.68	13.39	13.27	16.55	19.50	19.50	
30	Ave	7.72	6.52	4.07	3.24	4.64	5.70	5.77	6.10	6.04	4.49	6.51	7.45	6.44	
	Max	18.03	15.50	9.73	9.20	16.65	13.52	13.85	14.83	15.06	14.37	16.46	19.60	19.60	
40	Ave	7.98	6.65	3.86	3.47	4.63	5.70	6.00	6.37	6.29	4.62	6.65	7.64	6.62	
	Max	18.27	15.78	9.80	9.52	16.30	13.84	14.56	15.15	15.54	14.43	16.67	19.85	19.85	
50	Ave	8.00	6.65	4.39	3.50	4.59	5.67	6.07	6.51	6.46	4.72	6.74	7.67	6.69	
	Max	18.37	15.82	9.84	9.42	16.18	13.92	14.88	15.55	16.02	14.83	16.94	20.04	20.04	
80	Ave	8.41	7.03	4.60	3.60	4.66	5.77	6.45	7.03	7.08	5.01	6.96	7.90	7.02	(calculated
	Max	18.85	16.62	10.41	9.60	16.06	14.24	15.87	16.86	18.04	16.25	17.25	20.33	20.33	

Mean wind speed per height and per direction (sheet Shear)

Weibul	Neibull parameters per Height													
Height	Const	NNE	ENE	E	ESE	SSE	S	SSW	wsw	w	WNW	NNW	N	All Dirs
10	k	2.60	2.80	2.76	1.84	1.54	2.45	2.24	2.46	2.63	2.25	1.92	2.33	2.01
	С	7.8	6.3	4.2	3.3	4.7	6.1	5.7	5.7	5.3	4.2	6.7	7.9	6.4
20	k	2.65	2.72	2.46	1.97	1.57	2.45	2.24	2.49	2.48	2.04	1.79	2.35	2.08
	С	8.2	6.8	4.3	3.6	4.9	6.4	6.1	6.3	6.3	4.5	7.1	8.2	6.9
30	k	2.64	2.67	2.48	1.94	1.66	2.46	2.11	2.47	2.49	2.01	1.78	2.34	2.10
	С	8.7	7.3	4.7	3.5	5.0	6.5	6.6	6.8	6.8	4.8	7.2	8.4	7.2
40	k	2.62	2.63	2.24	1.92	1.66	2.49	2.07	2.49	2.49	2.08	1.78	2.35	2.08
	С	9.0	7.4	4.4	3.7	5.0	6.5	6.8	7.1	7.1	5.0	7.4	8.6	7.4
50	k	2.59	2.62	2.63	1.96	1.66	2.48	2.05	2.45	2.51	2.10	1.76	2.33	2.09
	С	9.0	7.4	5.1	3.8	5.0	6.4	6.9	7.2	7.3	5.2	7.5	8.7	7.5
80	k	2.55	2.53	2.64	2.01	1.70	2.46	1.94	2.41	2.40	2.02	1.71	2.31	2.07
	С	9.5	7.8	5.3	3.9	5.1	6.5	7.3	7.7	8.0	5.5	7.7	8.9	7.9

Variation of the Weibull distribution parameters, per height and per direction (sheet Shear)

Wind Shear exp. coef. α Data percentage with R ² >0.95 : 90.												95 : 90.2	5%
m/s	NNE	ENE	E	ESE	SSE	S	SSW	WSW	W	WNW	NNW	Ν	average
5-6	0.045	0.138	0.207	0.365	0.159	0.175	0.218	0.242	0.310	0.165	0.166	0.080	0.165
6-7	0.079	0.100	0.223	0.388	0.130	0.144	0.160	0.188	0.357	0.278	0.164	0.099	0.146
7-8	0.049	0.179	0.249	0.401	0.161	0.099	0.090	0.162	0.374	0.398	0.175	0.099	0.124
8-9	0.068			0.369	0.186	0.113	0.100	0.118	0.355	0.424	0.152	0.086	0.119
9-10	0.090				0.167	0.095	0.097	0.176	0.396	0.525	0.172	0.077	0.107
10-11	0.104			0.411	0.180	0.120	0.113	0.168	0.404		0.134	0.075	0.101
11-12	0.093			0.351	0.211	0.108	0.110	0.147	0.475	0.482	0.102	0.079	0.106
12-13	0.103			0.344	0.250	0.129	0.081	0.166	0.474	0.465	0.083	0.079	0.107
13-14	0.100			0.344		0.124	0.109	0.178	0.363		0.050	0.073	0.091
14-15	0.109			0.369		0.129	0.119	0.156	0.404		0.092	0.075	0.095
15-16	0.110					0.120	0.090					0.078	0.087
16-17	0.097					0.122	0.088				0.126	0.078	0.084
17-18	0.099				0.185	0.144	0.035				0.066	0.078	0.082
18-19	0.081					0.186	0.093					0.076	0.080
19-20							0.074					0.070	0.070
20-21						0.221	0.104					0.070	0.075
21-22							0.017					0.070	0.069
22-23												0.059	0.059
23-24												0.058	0.058
24-25												0.086	0.086
25-												0.062	0.062
average	0.088	0.139	0.227	0.371	0.181	0.135	0.100	0.170	0.391	0.391	0.124	0.077	0.116

Wind shear exponent results per wind speed and direction. (sheet Shear)

At the end of the *Shear* sheet, a series of graphs are created showing the influence of the mast tower "shadow" on the (lower) anemometers, assuming that the reference anemometer is installed on the top of the mast, where the wind flow is undisturbed, no matter the wind direction. This is achieved by plotting the wind speed ratios above a threshold (4m/s).

Influence of the mast tower "shadow" on the (lower) anemometers. Polar plot of the wind speed ratio of a low anemometer versus the top one (worksheet: Shear).

In the above example, note that at $\sim 300^{\circ}$ the anemometers ratio falls around 0.5, providing valuable information about a) the exact orientation of the boom and b) the boom length sufficiency according to the standards. A less pronounced drop of the ratio is also observed, as expected, diametrically at $\sim 120^{\circ}$.

These graphs are automatically created for all the low anemometers in respect to the reference one, without any user interaction. However, since Excel cannot handle more that 32000 data per graph, an external graph library is used to create them in a form of a PNG picture. Consequently, these graphs cannot further customized, as other Excel graphs in *WindRose.XLS*.

Time Charts Three important figures are presented in this worksheet, displaying the results of the wind data analysis in a "global" form. More detailed "views" of the results are presented in the next worksheets.

Wind speed variation per day (mean & max. values)

- The 1st one shows the evolution of the daily mean wind speed, as well as, the maximum wind speed occurred per day, for the given time-step (i.e. if 10minutes series are recorded, the maximum value is of course, not the instantaneous 1sec gust, but the maximum 10minutes wind speed occurred during this day).
- The 2nd figure presents the Diurnal distribution. Actually, this is the distribution of the wind speed as a function of the hour of the day. All the data are taken into account here, independently of the wind direction. The Diurnal distribution per month is presented in the *12diurnal* worksheet.

Distribution of the wind speed per hour of the day.

• Finally, the 3rd figure shows the mean wind speed per month. If more than a year period is examined, each monthly mean wind speed is calculated from all the corresponding months.

Mean wind speed variation per month.

Tables Two very essential tables are presented in this worksheet. The 1st one shows the variation of the % turbulence intensity (σ_u/U^*100) over the wind direction and the wind speed. The 2nd one shows the total data distribution over both wind speed and direction. The following points should be noted here:

The "binning" of the wind speed is done in 25 steps of 1m/s, starting from the [0m/s, 1m/s), with the 26th one gathering all data higher than 25m/s. The table of the turbulence intensities does not show the first five velocity bins (the Excel's "*Hide cells*" option is enabled), as no physical meaning can be extracted from turbulence intensities, when the mean wind speed approaches to zero. In that case, the ratio σ_u/U takes very high values, dominating the rest ones in the graphical representation of the table (see worksheet: *3D*).

m/s	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	N	totals
0-1	32	61	50	78	124	100	92	154	110	104	141	189	229	166	38	36	1704
1-2	41	55	80	142	141	175	134	158	158	224	315	436	493	337	47	42	2978
2-3	31	49	69	187	239	255	140	141	139	304	483	782	784	428	64	22	4117
3-4	16	27	61	139	206	215	127	153	161	361	720	1338	797	288	18	7	4634
4-5	9	5	18	60	167	209	158	189	142	284	899	2165	862	106	10	7	5290
5-6	18	8	11	33	139	243	220	148	105	236	609	2351	782	65	22	13	5003
6-7	7	2	1	14	144	218	218	130	91	208	430	1988	1004	88	10	3	4556
7-8				15	115	265	204	54	91	177	246	1463	1131	106	5	1	3873
8-9	1			10	69	168	122	31	93	138	151	1272	1298	120		2	3475
9-10				7	46	184	78	28	52	135	122	995	1413	137	1		3198
10-11				5	31	218	77	26	42	83	76	1163	1439	176			3336
11-12				4	46	205	71	19	23	71	72	1159	1338	250	1		3259
12-13				10	23	211	81	26	26	61	30	1004	1245	177	1		2895
13-14				4	16	191	37	23	20	33	22	938	1238	57	2		2581
14-15				5	14	122	34	13	15	51	6	813	1100	44	1		2218
15-16				4	6	86	27	4	2	63	3	430	933	40	1		1599
16-17				8	6	93	26	6		22		162	684	58	2		1067
17-18				10	6	58	12	3		8		29	524	30			680
18-19				12	1	37	7	2		2		6	470	11			548
19-20				4		18	11	1				1	308	11			354
20-21				1	1	18	8						189	3			220
21-22						8	6						89				103
22-23						1	4						25				30
23-24							2						5				7
24-25							3						3				6
25-							1										1
totals	155	207	290	752	1540	3298	1900	1309	1270	2565	4325	18684	18383	2698	223	133	57732

Data distribution vs Wind Speed & Wind Direction

Tables worksheet: Data distribution per wind speed and direction.

The number of the wind direction sectors is the one selected in the Input worksheet (8, 12 or 16). As mentioned before, each direction refers to the mean angle of the corresponding sector. For example: suppose that 16 sectors are selected (the default and recommended value), then the width of each sector is 22.5° (=360°/16) and the North winds are all whose angle falls into the [348.75°, +11.25°) sector.

The mean turbulence intensity, per wind speed and direction bin, is calculated using the classical averaging methods; no correction takes place. Although not precise, this simple method provides a satisfactory approximation of the *"true"* turbulence intensity, which could be calculated, only if the detailed wind speed time-series were available.

The number of successive rotations of the wind vane (clockwise and counter clockwise) is given in the 2^{nd} table. These revolution numbers, indicating the number of times that a wind turbine would have been rotated around itself, provide a good estimate of the number of times that the **electrical power cables are twisted**. For this calculation, all the data (including calms) have been taken into account, considering that even during low wind speeds, the wind turbine usually rotates for an optimum orientation. Obviously, the accuracy of the two numbers depends on the data completeness (low number of missing data).

3D This worksheet contains the 3D graphical representation of the *Tables* worksheet, showing the turbulence intensity distribution per wind speed and direction, as well as, the total data distribution again per wind speed and wind direction.

Turbulence Intensity (%) vs Wind Speed & Wind Direction

Turbulence intensity per wind speed and direction (*3D worksheet*).

12pie In this 2-page worksheet 12 pie charts are plotted, one per month of the year, showing the two dominant wind directions. At the end of the 2nd page a table is also given with the numerical representation of the figures. In case that, a prevailed sector (referring to time) is not among the best two sectors (referring to energy) then a blue colour is used (or a green colour in the opposite case). As in the *WindRose* sheet, the calms are not included here too.

Main wind directions (**blue:** based on the time, **green:** based on the energy content).

12diurnal This one-page sheet is composed by 12 bar-plots presenting the Diurnal distribution of the data, per month of the year (all years included). In fact, it is the hourly variation of the wind speed per month, all the directions taken into account. Note that, if the total diurnal distribution is needed, it can be found in the *TimeChart* sheet.

Important Note

• If data exceed 1-year period the (monthly) graphs cumulate data from different years. When it is necessary to see the diurnal distribution of only one specific month, then the program should be run, once per year (specifying accordingly the start and end dates in the *Input* worksheet).

Example of the Diurnal distribution per month (12diurnal worksheet).

Bar Charts The 4 most common representations of the wind distribution are plotted in the present worksheet. The first two show the distribution of the wind, based on the energy (not the expected energy production of the wind turbine) as a function of the wind direction (1^{st} one) and the wind speed (2^{nd} one) . The last two show the time-based distribution of the wind as a function of the wind direction (3^{rd} one) and the wind speed (4^{th} one) .

Wind energy distribution versus wind speed. (BarCharts worksheet).

Weibull The main figure of this worksheet shows the Weibull distribution that fits the wind data. <u>All</u> the wind directions have taken into account when calculating the shape (*k*) and the scale (*C*) coefficients of the Weibull distribution in this graph. If multiple anemometers are present, the graph refers to the reference anemometer (usually the highest one).

Data distribution together with the calculated Weibull distribution that fits the data.

Some important information is included in the table below the graph. Here, the coefficients of the Weibull distribution are displayed <u>per</u> wind direction sector together with the corresponding percentage of the total data found in it, the mean wind speed, the turbulence intensity and the starting and ending values of the direction sector. Some third-party programs, dealing with optimum wind turbine arrangement within a wind farm (i.e.: WindFarm[®] by ReSoft), require as an input this table's data, as well as, the site's topography.

Direction	Angles (deg)	Weibull shape	Weibull scale	Data Distrib	Mean Wind Speed (m/s)	T.I. (%) at 10m/s
NNE	11.25 - 33.75	1.65	3.27	0.27%	2.5	
NE	33.75 - 56.25	1.79	2.73	0.36%	1.9	
ENE	56.25 - 78.75	1.65	2.97	0.50%	2.2	
E	78.75 - 101.25	1.42	5.69	1.30%	4.0	11.0
ESE	101.25 - 123.75	1.70	6.28	2.67%	5.0	9.5
SE	123.75 - 146.25	1.87	9.37	5.71%	8.3	9.3
SSE	146.25 - 168.75	1.72	8.40	3.29%	6.9	10.3
s	168.75 - 191.25	1.58	5.88	2.27%	4.7	14.2
SSW	191.25 - 213.75	1.71	6.11	2.20%	5.1	15.4
SW	213.75 - 236.25	1.85	7.23	4.44%	5.9	15.2
wsw	236.25 - 258.75	2.16	6.07	7.49%	4.9	14.0
w	258.75 - 281.25	2.36	8.98	32.36%	7.8	11.7
WNW	281.25 - 303.75	2.11	11.32	31.84%	10.2	8.8
NW	303.75 - 326.25	1.74	7.25	4.67%	6.7	8.6
NNW	326.25 - 348.75	1.53	4.37	0.39%	3.0	12.1
N	348.75 - 11.25	1.55	3.02	0.23%	2.3	

Weibull distribution coefficients, data percentage, mean wind speed and turbulence intensity, per direction sector.

In this version of *WindRose*, the calculated Weibull coefficients <u>per</u> <u>month</u> are given only as values at: *TempData!M109:0122* however, future versions will include a graphical representation.

The 2^{nd} graph of the worksheet is the wind data accumulated probability (based on the data distribution, <u>not</u> on the Weibull distribution). It is a useful tool to estimate the percentage of the time that the wind speed exceeds a specific value, i.e. how much of the time the wind speed exceeds the cut-in or the cut-out speed of the wind turbine.

Cumulative data probability. (i.e.: 33% of the time, the wind speed is higher than 10m/s).

The 3^{rd} graph shows the variation of the turbulence intensity over the wind direction. The calculation is done using only wind speeds within the specified range in the *Input* worksheet (usually 10m/s ± 1m.s). Obviously, if a direction sector has no data in the specified wind speed bin, a zero is displayed. The discussion held in the description of the *Tables* worksheet about averaging turbulence intensities, applies here too. Safe conclusions can be obtained only when significant amount of data are found in each direction sector.

UhourT - UhourG These 2 worksheets contain monthly tables (*UhourT*) and graphs (*UhourG*), representing the evolution of the mean <u>hourly</u> wind speed per day.

Variation of the mean wind speed per hour, during the month of January. (24 * 31=744 points plotted).

DIRhourT - DIRhourG Similarly to the previous 2 worksheets, *DIRhourT* and *DIRhourG*, show the variation of the wind direction per day (mean value per hour), for each month.

February 2000 Total: 267252kWh Mean Wind Speed: 8.6m/s Data completeness: 99.9% 20000 16 El.Energy [kWh] 15000 12 U [m/s] 10000 8 Е 5000 4 U 0 0 21 23 25 27 29 31 1 3 5 7 9 11 13 15 17 19 Day

WTprodG: Variation of the WT's daily produced energy together with the mean wind speed.

																					-				
Feb	oruar	'y 20	000		Tota	il exp	p. pr	odu	ction	by	Nord	dex	N50/	800	267	7252	kWł	n Me	an	Wind	Spe	eed:	8.6r	n/s	
Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Sum
1	313	276	410	504	188	132	95	133	151	25	107	58	21	18	87	75	99	63	8	5	20	38	24	3	285
2	4	23	27	15	7	2	0	35	129	256	454	546	613	677	714	730	715	739	740	720	721	666	725	736	9993
3	735	718	711	727	739	735	731	739	739	740	738	723	701	697	709	713	730	673	473	351	242	241	228	151	1468
- 4	36	5	8	11	23	2	3	68	178	395	525	684	735	722	718	664	656	654	652	660	435	544	659	656	969
5	658	678	680	689	707	709	723	727	743	724	721	651	506	172	16	6	58	193	106	83	113	70	8	2	974
6	63	0	0	0	0	1	2	0	0	0	0	0	1	2	4	2	2	0	0	0	0	7	35	17	13
7	1	0	1	4	1	11	3	5	28	1	0	0	2	0	8	38	73	102	61	39	5	0	0	0	38-
8	0	0	1	9	31	19	45	34	10	6	32	161	301	328	435	526	530	615	614	565	299	228	199	252	523
9	350	451	467	443	463	511	500	558	517	591	511	566	702	734	726	517	530	524	401	312	137	134	78	61	1078
10	102	/5	88	68	30	37	2	284	588	0/0	702	/15	729	219	514	287	40	12	189	294	143	130	196	313	649
11	113	120	295	230	219	610	724	700	119	307 621	243	200	280	102	285	489	12	658	555	5/1	630	5/5	520	059	702
12	1	422	411	27	76	22	169	120	30	10	1	200	202	123	52	35	110	42	44	20	2	2	0	12	01
14	16	2	82	81	60	60	116	158	207	201	486	376	322	323	277	256	166	208	102	84	70	38	4	12	388
15	10	1	53	70	217	168	180	210	325	314	108	354	518	504	614	670	550	622	546	442	80	250	285	350	755
16	383	253	249	239	171	176	160	144	294	184	123	97	85	22	31	66	41	51	62	70	45	43	98	83	317
17	58	46	12	63	146	376	411	536	565	446	404	198	366	378	525	586	500	438	424	681	612	224	210	622	882
18	722	696	732	706	731	736	715	613	633	541	580	467	608	672	611	667	718	722	698	698	683	713	668	572	1590
19	681	554	544	678	719	740	603	572	518	610	644	700	731	725	695	680	696	725	727	616	465	405	543	741	15314
20	742	740	738	743	740	734	731	735	734	716	642	590	639	568	606	639	692	689	647	659	656	718	738	722	1655
21	709	732	719	729	715	633	697	675	590	668	664	711	691	735	732	732	691	732	719	583	630	677	686	593	1644
22	657	444	446	557	278	315	348	191	40	198	34	0	0	5	10	2	29	143	108	308	262	262	543	446	562
23	584	586	374	403	613	636	615	552	560	650	665	681	672	684	661	687	686	586	639	695	646	677	688	651	1489
24	697	670	636	650	637	667	705	704	721	715	691	675	665	595	548	554	668	635	682	685	708	719	735	740	1610
25	742	735	719	710	711	706	709	702	694	711	722	683	565	490	244	156	36	3	0	0	2	21	83	278	1042
26	690	721	737	724	722	739	729	716	712	734	736	667	208	369	436	389	298	135	39	0	47	92	66	106	1081
27	252	175	243	297	334	395	469	500	480	551	504	590	567	500	432	299	414	359	372	148	260	389	559	503	959
28	642	444	607	545	663	735	728	727	738	727	739	742	714	731	725	732	740	713	722	739	717	707	722	734	1673
29	709	737	727	729	729	720	739	744	741	737	667	596	213	90	73	21	2	0	0	3	15	35	197	79	930
30																									
31																									

WTprodT: Table showing the hourly sum of the wind turbine energy production (*kWh*), per day of a month.

PAGE **30**

Variation of the Wind Turbine Energy production per month

WT's energy production and mean wind speed per month

TempT - TempG If in the *Input* worksheet, column numbers for the temperature were supplied, then in these 2 worksheets (similarly to the previous ones), one can find for each month the mean hourly temperature per day.

SRadT - SRadG Again, provided that in the *Input* worksheet, column numbers were specified for the solar radiation then, these 2 worksheets contain the sum of the hourly solar radiation per day, for each month of the year. Similarly to the above the tables and the graphs are in the *SRadT* and *SRadG* worksheets, respectively.

Some pyranometers (solar radiation measuring devices), record during the night, small negative values instead of zeros, due to a limited precision of their A/D converter. *WindRose* takes this into account by considering these data as zero, so that the correct hourly/daily sums are calculated.

TempData Finally, in this worksheet the detailed information, which is indispensable for the all graphs appearing to all the above-mentioned worksheets is presented. In order to improve the readability of the sheet, the data are grouped in sets of columns of different colours. It is reminded here that, by double-clicking on the every Excel graph, the user can see the corresponding data columns, when selecting "*X-Values*" and "*Names and Values*". Moreover, new graphs can be created using all the listed data, which will automatically updated each time the program runs.

CORRELATION – MISSING DATA PREDICTION

WindCorr This worksheet uses the MCP method (*Measure, Correlate, Predict*) and deals with the correlation between the measured data at two different sites. Before using it, <u>two</u> files (one per site) have to be created, by running *WindRose* twice (setting two different file names, in *Input* sheet's appropriate cell). When done, the program runs by selecting the *Calculate Correlations* option, in the toolbar of the Excel's main menu.

Site Correlation file name

Creating the necessary file for the Correlations (sheet Input)

Important Note

• The two measurement campaigns must contain data from <u>a common time period</u>. Otherwise, correlations cannot be calculated.

Based on the common data, calculations are performed to estimate *correlation coefficients* (ρ), *linear regression coefficients* (a, b of the best-line fit) and the *goodness of fit* (R^2)⁸. All the above are calculated:

- per wind speed range <u>and</u> per direction sector
- per wind speed range but for <u>all directions</u>
- per direction, but for <u>all the wind speeds</u> (above calms)
- for all wind speeds, no matter the direction

It is reminded here that, correlation coefficient values close to 1.0 show similar (in-phase) variations, while values close to 0.0 show

⁸Goodness of fit:
$$R^2 = 1 - \frac{SSE}{SSM}$$
 with:
 $SSE = \sum_{i=1}^{N} \left(y_i - \hat{y}_i \right)^2$ and $SSM = \sum_{i=1}^{N} \left(y_i - \overline{y} \right)^2$

where: y = ax + b (a, b are the slope and the offset of the best-line fit)

Correlation coefficient:

$$\rho = \frac{\sum_{i=1}^{N} (x \mathbf{1}_i - \mu_1) (x \mathbf{2}_i - \mu_2)}{\sigma_1 \cdot \sigma_2} \text{, where } \mathbf{x} \mathbf{1}_{1,2,\dots,\mathsf{N}} \text{ and } \mathbf{x} \mathbf{2}_{1,2,\dots,\mathsf{N}} \text{ are the } \mathbf{x} \mathbf{1}_{1,2,\dots,\mathsf{N}} \mathbf{1}_{1,2,\dots,\mathsf{N}} \mathbf{x} \mathbf{1}_{1,2,\dots,\mathsf{N}} \mathbf{$$

common data of the two time-series x1 kaı x2, with mean values μ_1 and μ_2 and standard deviations σ_1 and $\sigma_2.$

irrelevant variations (uncorrelated phenomena). Furthermore, goodness of fit values close to 1.0 show that the best-fit line represents very well the data "*cloud*" (using the linear regression coefficients).

Input parameters

The first column of the *WindCorr* sheet contains the necessary parameters for the program to run. The main input is 2 files containing the data from the Reference and the Target site. As pointed out earlier, these files are generated by running twice *WindRose* before this step. After running the *"Calculate Correlations"* command, the *WindCorr* sheet holds all the results in form of tables and graphs. Optionally, two files can be also created containing i) the concurrent pair of data and ii) the predicted time-series (see § below: Output Files). The remaining input parameters are:

- The initial time-shift of the 2 time-series, used to calculate the best possible correlation coefficient (see below: Methodology)⁹.
- A Boolean value (*Yes/No*) indicating whether or not an hourly averaging will occur, before processing the data. Often, the hourly averaging provides better correlations.
- The number of the wind speed bins.
- The width of each wind speed bin.
- The minimum number of common hours that must exist (per wind speed bin and direction sector), in order to perform reliable calculations (recommended: 2hours, i.e. if the time step is 10min, 12 data)
- The number of the direction sectors $(8, 12 \text{ or } 16)^{10}$.

Recommendation

When correlation results are not satisfactory, try less direction sectors, wider wind speed bins and hourly averaging.

⁹. For nearby sites 2 hours is sufficient, provided that the clocks are synchronized.

¹⁰ Note that this number has nothing to do with the one set during the *WindRose* analysis.

Methodology

1

Consider correlating measured data from a Reference site (long-term data) and a Target site (short-term or incomplete data).

Sometimes nearby sites log wind data with a time lag, depending on their distance (and their data-loggers clock settings). This time lag can be determined by examining the correlation coefficient for various time-shifts (*i.e. -2h, -1h 50min, ..., 0, ..., +1h 50min, +2h*) of the Target time-series, in respect to the Reference ones. The time-shift, at which the maximum value of the correlation coefficient is found, is then inserted into the Target time-series (by adding it to its time/date array)¹¹ and displayed at the Table 2 of the *WindCorr* sheet.

The input parameters of the WindCorr Sheet.

Time-shift values close to zero show that wind phenomena occur simultaneously to both sites. Global correlation coefficients close to

¹¹ This step assures that time-series from data-loggers with <u>unsynchronized clocks</u> will be correctly processed !!

zero show uncorrelated phenomena and should alarm the user about the exploitation of the results.

Let's now assume, for simplicity reasons, that the Reference site holds 1-year long data and the Target site holds 9-month data (missing months: January, February and October). Hence the concurrent pairs of data are 9-month long.

The next step is to select the data of the Reference time-series that *"belong"* to a specific wind speed bin and direction sector. In the same time, we investigate their concurrent pairs from the Target time-series. For both data sets, all the statistical quantities (i.e.: mean values, linear regression coefficients, etc) are calculated and stored.

Now, if *WindRose* is asked to predict missing data, then for the <u>wind</u> <u>speed</u> it uses the regression coefficients and for the <u>wind direction</u> the difference of the mean direction values.

Arithmetic example: Assume 16 direction sectors and 2m/s wide wind speed bins. Suppose that 100 Reference time-series data have directions from the NNW sector (326.25° to 348.75°) and their wind speed falls into the [6m/s-8m/s) bin. The mean value of their directions is 330.5°, and their average wind speed is 7.2m/s. The corresponding concurrent (*simultaneous*) 100 data from the Uncompleted time-series (not necessarily within the [6m/s-8m/s) bin and the NNW sector) have an average wind speed of 8.4m/s (varying from 6.5m/s to 9.8m/s) and average direction 321° (varying from 315° to 327°). Therefore, for the wind speed, the slope and the offset of the linear regression are calculated as: α =1.022 and β =1.141 and for the wind direction, the difference of the means is: $\Delta \phi = 321^\circ$ -330.5° = -9.5°

During the prediction phase, if in February the wind speed of the Reference site is u= 6.2m/s and the wind direction is $\varphi=330^{\circ}$ then, the predicted values (u', φ ') for the other site are: $u'=\alpha u+\beta = 1.022*6.2 + 1.141 = 7.48m/s$ and: $\varphi' = \varphi+\Delta\varphi = 330^{\circ}-9.5^{\circ} = 320.5^{\circ}$

Similarly, the same procedure is followed for the correlation – prediction of the turbulence intensities. The predicted gust value is taken as:

Umax(predicted)=3*USDV(predicted).

Notes on the methodology example

• The correlation results depend on the common data period. Therefore, if the Reference time series were 5-

or 15 years long, the correlation results would be the same and based to the common 9-month period.

- Apart from the partial correlation results (per wind speed bin <u>and</u> per direction), global correlations are also calculated i.e.: a) per wind speed bin, no matter the direction, b) per wind direction for all wind speeds above calm.
- Assume that SSE wind directions appeared only during January (when no data exist for the Target time-series). Therefore, no correlation results exist and consequently the prediction will be based on the global correlation results (per wind speed bin, no matter the direction).
- Again, assume that only during October (another missing data period) extremely high wind speeds (>25m/s) occurred from the NNW direction. However, correlation results exist for the NNW direction but only up to 18m/s. Therefore, the predicted values of these high speeds will be based on the global NNW correlation results (i.e.: all the wind speeds above calms, from that sector).

Number of data	Data start at	Data end at	Mean(*) Wind Speed [m/s]	Number of sync. data	Max. Wind Speed Correlation	at a time(**) shift [min]	General regression coefficients	of wind speeds	
50244	10/2/2001 0:08	9/2/2002 23:52	8.81		coefficient		slope	offset [m/s]	R2
				30358	0.984	10	0.984	0.005	0.968
30359	10/2/2001 0:02	10/9/2001 23:54	8.68						
			(*) at the			(**) of			
			common			Unc.site			
			time interval			relative to			
						Rof cito			

General results of the Correlations (WindCorr sheet).

Output Tables

The 2^{nd} table of the *WindCorr* sheet contains some statistics of the two input files and the global correlations results. In the beginning are given:

- The total number of the data in file.
- The dates of the first and last data points.
- The mean wind speed.

Then, in the next section are written:

• The number of the common data

- The maximum correlation coefficient after the timeshifting of the two-series (see above)
- The time-shift for which the max. Correlation coefficient occurred.

Finally, in the last section are written:

- The global coefficients of the best-line fit (all wind speeds, no matter the direction)
- The goodness of fit R^2

The 3rd table of the *WindCorr* sheet presents the detailed correlation results, per direction and wind speed bin. Note that this is not a static table and its contents can change depending the selected direction in the *drop-down* button.

Wind speed bin - Ref. site - Ref. sit		
Wind speed bin - Ref. site - Ref. sit	Turb.Intensit	ies [%]
0 - 2 51 1.15 0.17 0.4588 0.325 -0.204 0.21052 22 6 30.5 14.5	Corr. Coef. Slope	Offset
	0.047 0.077	12.152
2-4 91 2.98 1.90 0.3883 1.097 -1.377 0.15078 22 2 20.6 40.6	0.464 2.350	-7.870
4 - 6 127 5.03 3.78 0.8789 1.004 -1.269 0.77246 22 11 14.8 18.8	0.626 1.057	3.154
6 - 8 147 6.97 5.58 0.6512 1.034 -1.631 0.42402 20 15 13.2 19.5	0.113 1.027	6.008
8 - 10 144 9.09 7.94 0.7379 1.251 -3.435 0.54443 20 17 13.2 15.8	0.501 0.773	5.663
10 - 12 137 10.98 9.79 0.2904 0.810 0.895 0.08434 19 15 14.5 14.0	0.165 0.336	9.118
12 - 14 101 12.97 11.29 0.1179 0.498 4.840 0.01391 19 23 14.9 13.3	0.205 0.430	6.856
14 - 16 58 14.98 13.84 0.7882 0.910 0.207 0.62122 17 22 15.1 12.9	0.778 0.954	-1.515
16 - 18 59 16.91 13.22 0.0480 0.453 5.563 0.00230 19 29 15.6 12.1	0.025 0.088	10.675
18 - 20 26 18.74 13.70 0.3194 3.609 -53.946 0.10204 18 27 15.5 11.3	0.070 0.207	8.056
20 - 22 18 20.78 14.46 0.2229 3.412 -56.440 0.04968 18 27 15.8 10.6 22 - 24	0.198 1.051	-6.007

The table with the detailed results of the correlations (WindCorr sheet). Note that the contents change according to the direction selection of the drop-down button.

Selected Direction : NNE

Another result of the WindCorr sheet: Mean wind speeds correlation per direction sector.

Output Files

Apart from the results presented in the worksheet's tables and graphs, three ASCII files are created containing the detailed results.

The 1st one contains the concurrent pair of data (i.e. in the above example 9-month data), which were used for the correlation/prediction.

The 2nd one includes time-series created by applying the calculated coefficients to the Reference time-series (in the given example, these are the 12-month long data). Note, that even if data existed in the time-series, there are not included.

The 3rd one is again the predicted data but <u>only</u> for the missing data period (i.e.: in the above example the predicted data for January, February and October).

Finally, the 4th table of the *WindCorr* sheet contains the correlation results per wind direction, for all wind speeds above 5m/s. Particular notice should be given to the angular shift of the wind direction vector.

A graphical representation of the Directions Correlation together with the mean wind speed (WindCorr sheet).

When averaging wind direction values, due to the discontinuity of the $(0^{\circ}, 360^{\circ})$ point, it is checked whether data exist in all the 4 quarters of the circle. In that case, results appear in red to remind that no reliable conclusions can be made.

Direction of Ref. Site	From	То	Number of data	Mean Direction of Ref. Site	Mean Direction of Unc. Site	Corr. Coeff.	Ref. site Mean wind speed	Unc. site Mean wind speed
NNE	11.25	33.75	552	19	19	0.2877	12.27	11.07
NE	33.75	56.25	65	40	38	0.1057	12.22	10.44
ENE	56.25	78.75	47	67	72	0.3424	11.57	9.58
E	78.75	101.25	31	86	92	0.2443	10.32	7.95
ESE	101.25	123.75						
SE	123.75	146.25	30	138	136	-0.2049	10.30	8.55
SSE	146.25	168.75	63	159	149	0.1365	9.69	8.39
S	168.75	191.25	83	181	172	0.4145	9.64	8.29
SSW	191.25	213.75	123	203	196	0.2704	10.79	8.98
SW	213.75	236.25	104	223	189	0.2810	11.34	9.81
WSW	236.25	258.75	49	248	243	0.3074	9.68	8.37
w	258.75	281.25	118	271	266	0.4507	10.09	9.69
WNW	281.25	303.75	58	290	298	0.5551	8.37	9.14
NW	303.75	326.25	44	318	333	0.3108	9.88	8.86
NNW	326.25	348.75	476	342	330	0.0900	10.39	9.04
N	348.75	11.25	1305	0	356	0.4160	12.07	10.88

WINDROSE : Wind Data Analysis software

Wind Direction correlations (WindCorr sheet).

Methodology of the correlation - prediction procedure.

APPENDIX

Spike detection / Warnings, errors When detecting wind speed values that exceed 10m/s, with respect to both the previous and the next time step values, they are considered as *"spikes"* (mal-functioning of the anemometer). In that case, a warning is issued and an automatic correction takes place, by replacing the peak with the average of the previous and the following values. For the gust wind speed time-series the limit is set to 13m/s. These values, along with some other preset parameters (see below), can be changed by the user from the *"Advanced Options…"* menu of the *WindRose*.

Changing the preset parameters of the WindRose program.

When multiple anemometers are used, a check is performed between the (simultaneous) wind speed values per height. If "strange" values are noticed, then a warning or an error is produced and an entry is added into the Log file. The alarm conditions are summarized below. They are based on the acquired experience and refer to each pair of successive anemometers and/or vanes. Thus, if a mast has 4 anemometers, then 3 successive tests will be performed for the anemometer pairs (1-2), (2-3) and (3-4).

Alarm Conditions Used

• Mean Wind Speed Vertical Profile $U2/U1 < \varepsilon$ Warning: $\epsilon = 1.2$ Error: $\varepsilon = 1.5$ • Max Wind Speed Vertical Profile $U2/U1 < \varepsilon$ Warning: $\varepsilon = 1.8$ Error[.] $\varepsilon = 2.0$ The final value of ε depends on the wind speed: If 0<u<5 then ε=ε * 2.5 If $5 \le 10$ then $\epsilon = \epsilon * 2.0$ If $10 \le u \le 15$ then ε=ε * 1.5 If $15 \le 465$ then ε=ε * 1.0

• Mean Wind Direction Vertical Profile $\Delta \phi$ (for U > 5m/s) Warning: $\Delta \phi = 25 \text{deg}$ Error: $\Delta \phi = 45 \text{deg}$

• Spike detection (for consecutive time steps)

Umean:	10m/s
Umax:	13m/s

• SDV constant or invariant during consecutive time steps.

Examples of the *WindRose* log file when an error occurs:

16/07/2004 14:30 Umax Error: Value beyond the error limit for the vertical profile Umax(45m)=39.41 Umax(30m)=12.55, while: Umean(45m)=7.51 Umean(30m)=6.98 File: c:\data\site1.txt Line: 21742 01/07/2000 21:00 Dir Error: Values beyond the error limit for the vertical profile Dir1= 230.0 Dir2= 329.3, while:

Umean(45m)=10.64 Umean(30m)=9.93 Umax(45m)=13.76 Umax(30m)=12.87

File: c:\data\site1.txt Line: 5334

Weibull distribution The probability density function f(u) of the Weibull distribution is given by the formula:

$$f(u) = \left(\frac{k}{c}\right) \left(\frac{u}{c}\right)^{k-1} e^{-\left(\frac{u}{c}\right)^k}$$
^[1]

where *k* and *C* are the characteristic parameters of the distribution. Two methods exist for the calculation of these parameters:

1st Method: Using only the Mean and SDV values

Solving $\{1\}$ for k and C, requires that the mean value μ and the standard deviation σ must be expressed as a function of k and C.

From the mean-value definition:

$$\mu = \mathcal{E}(u) = \int_{0}^{\infty} u f(u) du = \int_{0}^{\infty} u \left(\frac{k}{c}\right) \left(\frac{u}{c}\right)^{k-1} e^{-\left(\frac{u}{c}\right)^{k}} du$$

Using the transformation $t = \left(\frac{u}{c}\right)^k$ we obtain:

$$u = ct^{\frac{1}{k}}$$
 and $\left(\frac{c}{k}\right)dt = \left(\frac{u}{c}\right)^{k-1}du$

Therefore:

$$\mu = \int_0^\infty u \left(\frac{k}{c}\right) \left(\frac{u}{c}\right)^{k-1} e^{-\left(\frac{u}{c}\right)^k} du = c \int_0^\infty t^{\frac{1}{k}} e^{-t} dt$$

Recalling the gamma function definition:

$$\Gamma(q) = \int_{0}^{\infty} t^{q-1} e^{-t} dt , q > 0$$

we deduce that:

$$\mu = c\Gamma\left(1 + \frac{1}{k}\right)$$
^{2}

Now, for the standard deviation σ is valid to write:

$$E\{(u-\mu)^2\} = \sigma^2 = E(u^2) - \mu^2$$

Following the same transformation, we have:

$$E\left(u^2\right) = c^2 \Gamma\left(1 + \frac{2}{k}\right)$$

So, finally we conclude:

$$\sigma^{2} = c^{2} \left\{ \Gamma \left(1 + \frac{2}{k} \right) - \Gamma^{2} \left(1 + \frac{1}{k} \right) \right\}$$
 {3}

The Weibull distribution in its cumulative form $P(u \le u_1)$ is written as:

$$P(u \le u_1) = \int_0^{u_1} \left(\frac{k}{c}\right) \left(\frac{u}{c}\right)^{k-1} e^{-\left(\frac{u}{c}\right)^k} du$$

or:

$$P(u \le u_1) = 1 - e^{-\left(\frac{u_1}{c}\right)^k}$$
 {4}

The following asymptotic series is used as good approximation of the gamma function Γ :

$$\Gamma(x) = x^{(x-0.5)} e^{-x} \sqrt{2\pi} A(x)$$
 {5}

where:

$$A(x) = 1 + \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{a_3}{x^3} + \frac{a_4}{x^4} + \cdots$$

with : $a_1 = \frac{1}{12}, a_2 = \frac{1}{288}, a_3 = -\frac{139}{51840}, a_4 = -\frac{571}{2488320} \cdots$

Dividing {2} and {3} and setting $x = \frac{1}{k}$ we finally obtain the following non-linear *x*-function:

$$g(x) = \frac{\Gamma(1+2x)}{\Gamma^2(1+x)} - 1 - \left(\frac{\sigma}{\mu}\right)^2 = 0$$

Resolving g(x) = 0 is achieved by applying the Newton iterative method, starting from an initial value. For the (v) iteration we can write:

$$x^{(\nu)} = x^{(\nu-1)} - \frac{g^{(\nu-1)}}{g'^{(\nu-1)}}$$

Its $1^{st} x$ derivative of g(x) is:

$$g' = \frac{\partial g(x)}{\partial x} = \frac{\Gamma'(1+2x)\Gamma(1+x) - 2\Gamma(1+2x)\Gamma'(1+x)}{\Gamma^3(1+x)}$$
$$\Gamma'(0) = \frac{\partial\Gamma(0)}{\partial x}$$

where $\Gamma'() = \frac{\partial \Gamma()}{\partial x}$

The gamma function's derivative $\Gamma'(x)$ is calculated using the relationship $(x^x)' = x^x(\ln x + 1)$ that finally gives:

$$\Gamma'(x) = \frac{B(x) - \Gamma(x)}{x}$$

Using $\{5\}$, that is the asymptotic approximation of the Gamma function, leads to the following form for the B(x) function:

$$B(x) = \sqrt{2\pi x} x^{x} e^{-x} \left\{ A(x) \left[\frac{1}{2x} + \ln x \right] + \frac{\partial A(x)}{\partial x} \right\}$$

Keeping just the first 4 terms we obtain:

$$B(x) = \sqrt{2\pi x} x^{x} e^{-x} \left\{ A(x) \left[\frac{1}{2x} + \ln x \right] - \frac{a_{1}}{x^{2}} - \frac{2a_{2}}{x^{3}} - \frac{3a_{3}}{x^{4}} \right\}$$

As a result, B(x) is approximated permitting the calculation of the g'(x) at the v^{th} iteration.

2nd Method: Using the data distribution (Weibull paper)

This method (also referred as "Weibull paper") can be applied only if the wind speed distribution is already known.

The cumulative form of the Weibull distribution (i.e.: the probability that the wind speed is greater than a given value) is written as:

$$Q(u \ge u_1) = e^{-\left(\frac{u_1}{c}\right)^2}$$

Taking twice the logarithm, we obtain:

$$ln[-ln(Q(u))] = k ln(u) - k ln(C)$$

Therefore, if we plot a graph with the X and Y axes to be ln(u) and ln[- ln(Q(u)] respectively, then the Weibull distribution becomes a straight line with slope *k* and intercept point to Y-axis the quantity: -k ln(C), from which the *C* parameter can be calculated.

Note that, in the *Input* sheet it is given the possibility to "restrict" the wind speed range in which the fit is performed, so that extreme values (accentuated by the logarithms) will not affect the results. It is suggested to fit the data within the range: 4-16m/s.

Air density variation with height

Correct air density calculation is essential, since it influences significantly the energy calculations. *WindRose* expects power curves (given in the *PowerCurve* sheet) to be normalized, as recommended by IEC (sea level, 15°C, 1013.25mbar). The following three methods are available for the air-density calculation due to the height (site elevation + anemometer height).

1st Method

This method, mainly used when temperature and pressure measurements are not available, employs an empirical formula in which air density is a function only of the height [m]:

$$\rho = 1.226 \cdot e^{-3.1089 \cdot 10^{-5} \cdot Height}$$

2nd Method

Another method assumes the atmosphere's adiabatic variation, therefore:

$$\frac{dp}{dz} = -g\rho$$

where g=9.81m/s² is the gravity acceleration, ρ the air-density and z the height. Using the ideal gas equation:

$$p = R\rho T$$

where R=287 Joule deg⁻¹ kg⁻¹ is the gas constant, *p* the atmospheric pressure and *T* the temperature in Kelvin [°K], we obtain:

$$\frac{dp}{p} = -\frac{g}{RT}dz$$

Assuming that the temperature *T* varies with height:

$$T = T_0 - \Gamma z$$

With $T_0 = 288^{\circ}$ K (=273+15) and Γ is the vertical temperature gradient usually taken as: 6.5°K/km.

Integrating the above equation:

$$\int_{p_0}^{p} \frac{dp}{p} = -\frac{g}{R} \int_{0}^{z} \frac{dz}{T_0 - \Gamma z}$$

and taking the logarithm:

$$\ln\frac{p}{p_0} = \frac{g}{R\Gamma}\ln\left(1 - \frac{\Gamma z}{T_0}\right)$$

We, finally, conclude to the equation:

$$\rho = \rho_0 \frac{T_0}{T} \left(1 - \frac{\Gamma z}{T_0} \right)^{\frac{g}{\Gamma R}}$$

that relates the air density to the temperature T and the height z of a site. Note that, if the ASCII data files do not contain temperature columns, then a mean temperature value for the measurement period has to be set in the fourth table of the *Input* sheet.

At the end of the document a comparison table is given showing the differences of the first two methods.

<u>3rd Method</u>

This method uses 12 preset values, one per each month of the year. These values can be retrieved either from a nearby meteorological station or set intuitively. Power Curve correction

Following the IEC-61400-12 recommendations, the power curve is *corrected* depending the power control (stall, pitch control) of the wind turbine. The formulas used are the following:

A/ Γ stall control: $P = P_{norm} \cdot \frac{\rho}{\rho_{norm}}$

A/ Γ pitch control:

pl:
$$U = U_{norm} \cdot \left(\frac{\rho}{\rho_{norm}}\right)^{-\frac{1}{3}}$$

INSTALLATION ISSUES

WindRose.XLS Security Warning Under certain configurations (i.e.: Office XP and/or Windows XP professional), you may not be able to open the *WindRose.XLS* file with the included macro enabled. This will prevent *WindRose* to function properly. The following steps need to be taken to overcome this situation. The purpose is to end up with the *WindRose* macro to be among the Microsoft Excel's trusted sources.

Therefore, open Excel (without *WindRose.XLS*). go to *Tools*, *Macro*, *Security*. Set it to Medium.

Security L	evel Trusted	Sources		
C High. to run	Only signed macro . Unsigned macro	os from trusted : os are automatica	sources will b ally disabled.	e allowed
Medium unsafe	m. You can choos e macros.	se whether or no	t to run pote	ntially
C Low (r poten virus s docum	not recommended tially unsafe mac scanning softwar nents you open a	d). You are not p ros. Use this sett e installed, or yo re safe.	rotected fron ing only if yo u are sure all	n u have

Now, open *WindRose.XLS*. A security warning appears. Choose *Details*....

Security Warning	2 🛛
	H:\WindRose\COM+\WindRose.xls contains macros by WindRose
	Macros may contain viruses. It is always safe to disable macros, but if the macros are legitimate, you might lose some functionality.
	Always trust macros from this source.
	Disable Macros Enable Macros More Info

Then, select View Certificate and afterwards Install Certificate.

WINDROSE :	Wind	Data	Analysis	software
VINDICOSE .	v v ii i G	Duiu	7 (10) 313	Jonward

igital Signature General Advanced	Details	Certificate ?
Signer information	Signature Information al signature is OK.	Certificate Information This certificate is intended for the following purpose(s): •Ensures software came from software publisher •Protects software from alteration after publication
Signing time:	Not available	ate Issued to: WindRose
Countersignatur	es er: E-mail address: Timestamp	Issued by: WindRose
		Valid from 31/12/00 to 31/12/06
	Details	Install Certificate
		ОК

Now, come back to the previous screen, where the *Enable Macros* option is not anymore grayed (if not close Excel and re-open *WindRose.XLS*). Then, check the box *Always trust macros from this source*. Click *on Enable Macros* and start working with *WindRose.XLS*.

Security Warning		? 🗙			
	H:\WindRose\COM+\WindRose.xls contains macros by WindRose	De <u>t</u> ails			
	Macros may contain viruses. It is always safe to disable macros, but if the macros are legitimate, you might lose some functionality.				
	I✔ (Always trust macros from this source.)				
	Disable Macros Enable Macros M	ore Info			

Finally, you may check that *WindRose* is among Excel's *Trusted Macros*. Moreover, you may re-set the Security Level to *High*.

Security	? 🗙						
Security Level Trusted Sources							
WindRose	4						
Rem	nve						
Trust all installed add-ins and templates							
No virus scanner installed.							
ОК С	ancel						

REFERENCES

- 1. IEC-61400-12 International Electrotechnical Commission, "Wind Turbine Generator Systems, Part 12: Wind turbine Power Performance Testing", 1997.
- 2. "*Introduction to Wind Energy*", E.H. Lysen, CWD, May 1983, The Netherlands.
- 3. "Atmospheric turbulence. Models and Methods for Engineering Applications", H. Panofsky, J. Dutton, John-Wiley & Sons, 1984.
- 4. "Structure of Atmospheric Boundary layer", Z. Sorbjan, Practice hall, 1989, USA.
- 5. "Weibull coefficients estimation", D. Douvikas, Centre for Reneable Energy Sources (CRES), June 1999.
- 6. "Wind data analysis", D. Foussekis, CRES, April 1994.
- 7. "Wind Energy Conversion Systems", L. L. Freris, Prentice Hall, 1990
- 8. "*Atmospheric Science, An Introductory survey*", John. M. Wallace, Peter V. Hobbs, Academic Press, Inc. 1997.

Method 1		Method 2										
	Height	Height Temperatures [°C]										
		-10	-5	0	5	10	15	20	25	30	35	
1.226	0	1.341	1.316	1.292	1.269	1.247	1.225	1.204	1.184	1.164	1.145	
1.222	100	1.329	1.304	1.280	1.257	1.235	1.213	1.193	1.172	1.153	1.134	
1.218	200	1.316	1.292	1.268	1.245	1.223	1.202	1.181	1.161	1.142	1.123	
1.215	300	1.304	1.280	1.256	1.233	1.211	1.190	1.170	1.150	1.131	1.112	
1.211	400	1.292	1.267	1.244	1.221	1.200	1.179	1.158	1.139	1.120	1.101	
1.207	500	1.280	1.255	1.232	1.210	1.188	1.167	1.147	1.128	1.109	1.091	
1.203	600	1.267	1.243	1.220	1.198	1.177	1.156	1.136	1.117	1.098	1.080	
1.200	700	1.255	1.232	1.209	1.187	1.165	1.145	1.125	1.106	1.087	1.069	
1.196	800	1.243	1.220	1.197	1.175	1.154	1.134	1.114	1.095	1.076	1.059	
1.192	900	1.232	1.208	1.186	1.164	1.143	1.122	1.103	1.084	1.066	1.048	
1.188	1000	1.220	1.197	1.174	1.152	1.132	1.112	1.092	1.073	1.055	1.038	
1.185	1100	1.208	1.185	1.163	1.141	1.121	1.101	1.081	1.063	1.045	1.027	
1.181	1200	1.197	1.174	1.151	1.130	1.110	1.090	1.071	1.052	1.034	1.017	
1.177	1300	1.185	1.162	1.140	1.119	1.099	1.079	1.060	1.042	1.024	1.007	
1.174	1400	1.174	1.151	1.129	1.108	1.088	1.068	1.050	1.031	1.014	0.997	
1.170	1500	1.162	1.140	1.118	1.097	1.077	1.058	1.039	1.021	1.004	0.987	
1.167	1600	1.151	1.129	1.107	1.087	1.067	1.047	1.029	1.011	0.994	0.977	
1.163	1700	1.140	1.118	1.096	1.076	1.056	1.037	1.019	1.001	0.984	0.967	
1.159	1800	1.129	1.107	1.086	1.065	1.046	1.027	1.008	0.991	0.974	0.957	
1.156	1900	1.118	1.096	1.075	1.055	1.035	1.016	0.998	0.981	0.964	0.948	
1.152	2000	1.107	1.085	1.064	1.044	1.025	1.006	0.988	0.971	0.954	0.938	
1.149	2100	1.096	1.074	1.054	1.034	1.015	0.996	0.978	0.961	0.945	0.928	
1.145	2200	1.085	1.064	1.043	1.024	1.005	0.986	0.968	0.951	0.935	0.919	
1.141	2300	1.075	1.053	1.033	1.013	0.994	0.976	0.959	0.942	0.925	0.910	
1.138	2400	1.064	1.043	1.023	1.003	0.984	0.966	0.949	0.932	0.916	0.900	

Air-Density [kg/m³] as a function of Elevation. Comparison of the 2 methods

Comparison of the first two methods for the air-density variation with height.